cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A382523 Number of non-isomorphic finite multisets of size n that can be partitioned into sets with distinct sums.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 34, 45
Offset: 0

Views

Author

Gus Wiseman, Apr 01 2025

Keywords

Comments

First differs from A381996 at a(12) = 45, A381996(12) = 47.
We call a multiset non-isomorphic iff it covers an initial interval of positive integers with weakly decreasing multiplicities. The size of a multiset is the number of elements, counting multiplicity.

Examples

			First differs from A381996 in not counting the following under a(12):
  {1,1,1,1,1,1,2,2,3,3,4,5}
  {1,1,1,1,2,2,2,2,3,3,3,3}
The a(1) = 1 through a(6) = 6 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}  {1,1,1,2,2,3}
              {1,2,3}  {1,1,2,3}  {1,1,2,2,3}  {1,1,1,2,3,4}
                       {1,2,3,4}  {1,1,2,3,4}  {1,1,2,2,3,3}
                                  {1,2,3,4,5}  {1,1,2,2,3,4}
                                               {1,1,2,3,4,5}
                                               {1,2,3,4,5,6}
		

Crossrefs

Twice-partitions of this type are counted by A279785, strict A358914.
Factorizations of this type are counted by A381633, strict A050326.
Normal multiset partitions of this type are counted by A381718, strict A116539.
For integer partitions we have A381992, ranks A382075, complement A381990, ranks A381806.
The strict version is A381996.
The strict version for integer partitions is A382077, ranks A382200, complement A382078, ranks A293243.
The labeled version is A382216, complement A382202, strict A382214, complement A292432.
The complement is counted by A382430, strict A292444.

Programs

  • Mathematica
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[strnorm[n],Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]!={}&]],{n,0,5}]

A382301 Number of integer partitions of n having a unique multiset partition into constant blocks with distinct sums.

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 8, 9, 14, 16, 25, 30, 41, 52, 69, 83, 105, 129, 164, 208, 263, 315, 388, 449, 573, 694
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Examples

			The a(4) = 3 through a(8) = 14 partitions and their unique multiset partition into constant blocks with distinct sums:
  {4}     {5}       {6}         {7}        {8}
  {22}    {1}{4}    {33}        {1}{6}     {44}
  {1}{3}  {2}{3}    {1}{5}      {2}{5}     {1}{7}
          {11}{3}   {2}{4}      {3}{4}     {2}{6}
          {1}{22}   {11}{4}     {11}{5}    {3}{5}
          {2}{111}  {11}{22}    {1}{33}    {11}{6}
                    {1}{2}{3}   {3}{22}    {2}{33}
                    {1}{11}{3}  {1}{2}{4}  {11}{33}
                                {3}{1111}  {11}{222}
                                           {1}{2}{5}
                                           {1}{3}{4}
                                           {1}{3}{22}
                                           {1}{4}{111}
                                           {1}{111}{22}
		

Crossrefs

For distinct blocks instead of block-sums we have A000726, ranks A004709.
Twice-partitions of this type (constant with distinct) are counted by A279786.
MM-numbers of these multiset partitions are A326535 /\ A355743.
For no choices we have A381717, ranks A381636, zeros of A381635.
The Heinz numbers of these partitions are A381991, positions of 1 in A381635.
Normal multiset partitions of this type are counted by A382203.
For at least one choice we have A382427.
For strict instead of constant blocks we have A382460, ranks A381870.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers, see A381455, A381453.
A001055 counts factorizations, strict A045778, see A317141, A300383, A265947.
A050361 counts factorizations into distinct prime powers.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[pfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]]==1&]],{n,0,10}]

A382427 Number of integer partitions of n that can be partitioned into constant blocks with distinct sums.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 11, 14, 19, 28, 39, 50, 70, 91, 120, 161, 203, 260, 338, 426, 556, 695, 863, 1082, 1360, 1685
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

Conjecture: Also the number of integer partitions of n having a permutation with all distinct run-sums.

Examples

			The partition (3,2,2,2,1) can be partitioned as {{1},{2},{3},{2,2}} or {{1},{3},{2,2,2}}, so is counted under a(10).
The a(1) = 1 through a(7) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (1111)  (221)    (51)      (61)
                            (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (411)     (421)
                                     (2211)    (511)
                                     (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Twice-partitions of this type (constant with distinct) are counted by A279786.
Multiset partitions of this type are ranked by A326535 /\ A355743.
The complement is counted by A381717, ranks A381636, zeros of A381635.
For strict instead of constant blocks we have A381992, ranks A382075.
For a unique choice we have A382301, ranks A381991.
Normal multiset partitions of this type are counted by A382203, sets A381718.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers, see A381455, A381453.
A001055 counts factorizations, strict A045778, see A317141, A300383, A265947.
A050361 counts factorizations into distinct prime powers.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Table[Length[Select[IntegerPartitions[n],Select[pfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]!={}&]],{n,0,10}]

A383310 Number of ways to choose a strict multiset partition of a factorization of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 9, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 19, 3, 3, 3, 24, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 46, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 37, 3, 12, 1, 8, 3, 12, 1, 67, 1, 3, 8, 8, 3, 12, 1, 46, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2025

Keywords

Examples

			The a(36) = 24 choices:
  {{2,2,3,3}}  {{2},{2,3,3}}  {{2},{3},{2,3}}
  {{2,2,9}}    {{3},{2,2,3}}  {{2},{3},{6}}
  {{2,3,6}}    {{2,2},{3,3}}
  {{2,18}}     {{2},{2,9}}
  {{3,3,4}}    {{9},{2,2}}
  {{3,12}}     {{2},{3,6}}
  {{4,9}}      {{3},{2,6}}
  {{6,6}}      {{6},{2,3}}
  {{36}}       {{2},{18}}
               {{3},{3,4}}
               {{4},{3,3}}
               {{3},{12}}
               {{4},{9}}
		

Crossrefs

The case of a unique choice (positions of 1) is A008578.
This is the strict case of A050336.
For distinct strict blocks we have A050345.
For integer partitions we have A261049, strict case of A001970.
For strict blocks that are not necessarily distinct we have A296119.
Twice-partitions of this type are counted by A296122.
For normal multisets we have A317776, strict case of A255906.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, distinct A050326.
A281113 counts twice-factorizations, strict A296121, see A296118, A296120.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[y],UnsameQ@@#&]],{y,facs[n]}],{n,30}]

A383308 Number of integer partitions of n that can be partitioned into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 6, 10, 13, 15, 13, 31
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2025

Keywords

Comments

Any strict partition can be partitioned into a single set, so we have a lower bound a(n) >= A000009(n).

Examples

			The multiset (3,2,2,1,1) has partition {{3},{1,2},{1,2}}, so is counted under a(9).
The a(1) = 1 through a(9) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)         (9)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)        (54)
             (111)  (31)    (41)     (42)      (52)       (53)        (63)
                    (1111)  (11111)  (51)      (61)       (62)        (72)
                                     (222)     (421)      (71)        (81)
                                     (321)     (1111111)  (431)       (333)
                                     (2211)               (521)       (432)
                                     (111111)             (2222)      (531)
                                                          (3311)      (621)
                                                          (11111111)  (3321)
                                                                      (32211)
                                                                      (222111)
                                                                      (111111111)
		

Crossrefs

Twice-partitions of this type (into sets with a common sum) are counted by A279788.
Multiset partitions of this type are ranked by A326534 /\ A302478.
For distinct instead of equal sums we have A381992, see also A382077.
The complement is counted by A381994, ranks A381719.
Partitions of prime indices of this type are counted by A382080.
Normal multiset partitions of this type are counted by A382429, see A326518.
For constant instead of strict blocks we have A383093, ranks A383014.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations, strict A045778.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&SameQ@@Total/@#&]]>0&]],{n,0,10}]

A383311 Number of ways to choose a set multipartition (multiset of sets) of a factorization of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 16, 2, 3, 4, 7, 1, 12, 1, 12, 3, 3, 3, 20, 1, 3, 3, 16, 1, 12, 1, 7, 7, 3, 1, 33, 2, 7, 3, 7, 1, 16, 3, 16, 3, 3, 1, 34, 1, 3, 7, 22, 3, 12, 1, 7, 3, 12, 1, 49, 1, 3, 7, 7, 3, 12, 1, 33, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 28 2025

Keywords

Comments

First differs from A296119 at a(36) = 20, A296119(36) = 21.

Examples

			The a(36) = 20 choices are:
  {{2,3,6}}  {{2,3},{2,3}}  {{2},{3},{2,3}}  {{2},{2},{3},{3}}
  {{2,18}}   {{2},{2,9}}    {{2},{2},{9}}
  {{3,12}}   {{2},{3,6}}    {{2},{3},{6}}
  {{4,9}}    {{3},{2,6}}    {{3},{3},{4}}
  {{36}}     {{6},{2,3}}
             {{2},{18}}
             {{3},{3,4}}
             {{3},{12}}
             {{4},{9}}
             {{6},{6}}
		

Crossrefs

The case of a unique choice (positions of 1) is A008578.
For multisets of multisets we have A050336.
For sets of sets we have A050345.
For normal multisets we have A116540, strong A330783.
For integer partitions instead of factorizations we have A089259.
Twice-partitions of this type are counted by A270995.
For sets of multisets we have A383310 (distinct products A296118).
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, distinct A050326.
A281113 counts twice-factorizations, see A294788, A296120, A296121.
A302478 gives MM-numbers of set multipartitions.
A302494 gives MM-numbers of sets of sets.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[y], And@@UnsameQ@@@#&]], {y,facs[n]}],{n,100}]
Previous Showing 21-26 of 26 results.