A385572
Number of subsets of {1..n} with the same number of maximal runs (increasing by 1) as maximal anti-runs (increasing by more than 1).
Original entry on oeis.org
1, 2, 3, 4, 7, 12, 19, 34, 63, 112, 207, 394, 739, 1398, 2687, 5152, 9891, 19128, 37039, 71754, 139459, 271522, 528999, 1032308, 2017291, 3945186, 7723203, 15134440, 29679407, 58245068, 114389683, 224796210, 442021743, 869658304, 1711914351, 3371515306
Offset: 0
The set {2,3,5,6,8} has maximal runs ((2,3),(5,6),(8)) and maximal anti-runs ((2),(3,5),(6,8)) so is counted under a(8).
The a(0) = 1 through a(6) = 19 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{1,2,4} {5} {5}
{1,3,4} {1,2,4} {6}
{1,2,5} {1,2,4}
{1,3,4} {1,2,5}
{1,4,5} {1,2,6}
{2,3,5} {1,3,4}
{2,4,5} {1,4,5}
{1,5,6}
{2,3,5}
{2,3,6}
{2,4,5}
{2,5,6}
{3,4,6}
{3,5,6}
The case containing n + 1 is
A217615.
Subsets of this type are ranked by
A385575.
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts
A384878.
-
a:= proc(n) option remember; `if`(n<5, [1, 2, 3, 4, 7][n+1], ((3*n-4)*a(n-1)-
(3*n-5)*a(n-2)+(5*n-12)*a(n-3)-2*(4*n-11)*a(n-4)+4*(n-3)*a(n-5))/(n-1))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jul 06 2025
-
Table[Length[Select[Subsets[Range[n]],Length[Split[#,#2==#1+1&]]==Length[Split[#,#2!=#1+1&]]&]],{n,0,10}]
-
a(n)=polcoef([1,1,1]*[x,0,0;x,x^2,1;0,x,x]^n*[1,0,0]~,n) \\ Christian Sievers, Jul 06 2025
A385215
Number of maximal sparse submultisets of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1
The sparse submultisets of the prime indices of n = 8 are {{},{1},{1,1},{1,1,1}}, with maximization {{1,1,1}}. So a(8) = 1.
The sparse submultisets of the prime indices of n = 462 are {{},{1},{2},{4},{5},{1,4},{2,4},{1,5},{2,5}}, with maximization {{1,4},{1,5},{2,4},{2,5}}, so a(462) = 4.
The prime indices of n together their a(n) maximal sparse submultisets for n = 1, 6, 210, 462, 30030, 46410:
{} {1,2} {1,2,3,4} {1,2,4,5} {1,2,3,4,5,6} {1,2,3,4,6,7}
------------------------------------------------------------
{} {1} {1,3} {1,4} {2,5} {1,3,6}
{2} {1,4} {1,5} {1,3,5} {1,3,7}
{2,4} {2,4} {1,3,6} {1,4,6}
{2,5} {1,4,6} {1,4,7}
{2,4,6} {2,4,6}
{2,4,7}
This is the maximal case of
A166469.
For binary instead of prime indices we have
A384883, maximal case of
A245564.
The greatest number whose prime indices are one of these submultisets is
A385216.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A384887 counts partitions with equal lengths of gapless runs, distinct
A384884.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
maxq[els_]:=Select[els,Not[Or@@Table[Divisible[oth,#],{oth,DeleteCases[els,#]}]]&];
Table[Length[maxq[Select[Divisors[n],FreeQ[Differences[prix[#]],1]&]]],{n,30}]
A385575
Numbers whose binary indices have the same number of adjacent parts differing by 1 as adjacent parts differing by more than 1.
Original entry on oeis.org
1, 2, 4, 8, 11, 13, 16, 19, 22, 25, 26, 32, 35, 38, 44, 49, 50, 52, 64, 67, 70, 76, 87, 88, 91, 93, 97, 98, 100, 104, 107, 109, 117, 128, 131, 134, 140, 151, 152, 155, 157, 167, 174, 176, 179, 182, 185, 186, 193, 194, 196, 200, 203, 205, 208, 211, 214, 217
Offset: 1
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
8: 1000 ~ {4}
11: 1011 ~ {1,2,4}
13: 1101 ~ {1,3,4}
16: 10000 ~ {5}
19: 10011 ~ {1,2,5}
22: 10110 ~ {2,3,5}
25: 11001 ~ {1,4,5}
26: 11010 ~ {2,4,5}
32: 100000 ~ {6}
35: 100011 ~ {1,2,6}
38: 100110 ~ {2,3,6}
44: 101100 ~ {3,4,6}
49: 110001 ~ {1,5,6}
50: 110010 ~ {2,5,6}
52: 110100 ~ {3,5,6}
64: 1000000 ~ {7}
67: 1000011 ~ {1,2,7}
70: 1000110 ~ {2,3,7}
76: 1001100 ~ {3,4,7}
87: 1010111 ~ {1,2,3,5,7}
88: 1011000 ~ {4,5,7}
91: 1011011 ~ {1,2,4,5,7}
93: 1011101 ~ {1,3,4,5,7}
97: 1100001 ~ {1,6,7}
98: 1100010 ~ {2,6,7}
100: 1100100 ~ {3,6,7}
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts
A384878.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],Length[Split[bpe[#],#2==#1+1&]]==Length[Split[bpe[#],#2!=#1+1&]]&]
-
is_ok(n)=hammingweight(n)==2*hammingweight(bitand(n,n>>1))+1 \\ Christian Sievers, Jul 18 2025
A385891
The number k = a(n) whose Stolarsky representation (row k of A385888) is the binary expansion of n (row n of A030302). Inverse Stolarsky representation of binary expansion of n.
Original entry on oeis.org
1, 2, 4, 3, 9, 6, 7, 5, 22, 15, 14, 10, 17, 11, 12, 8, 56, 36, 38, 24, 35, 23, 25, 16, 43, 28, 27, 18, 30, 19, 20, 13, 145, 91, 93, 58, 98, 61, 62, 39, 90, 57, 59, 37, 64, 40, 41, 26, 111, 70, 72, 45, 69, 44, 46, 29, 77, 49, 48, 31, 51, 32, 33, 21, 378, 235, 237
Offset: 0
-
nn=30;
stol[n_]:=stol[n]=If[n==1,{},If[n!=Round[Round[n/GoldenRatio]*GoldenRatio],Join[stol[Floor[n/GoldenRatio^2]+1],{0}],Join[stol[Round[n/GoldenRatio]],{1}]]];
ss=Table[stol[n],{n,nn}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
Table[Position[ss,If[n==0,{},IntegerDigits[n,2]]][[1,1]],{n,0,mnrm[FromDigits[#,2]&/@ss+1]-1}]
A385892
In the sequence of run lengths of binary indices of each positive integer (A245563), remove all duplicate rows after the first and take the last term of each remaining row.
Original entry on oeis.org
1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 1, 2, 2, 3, 4, 6, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7
Offset: 1
The binary indices of 53 are {1,3,5,6}, with maximal runs ((1),(3),(5,6)), with lengths (1,1,2), which is the 16th row of A385817, so a(16) = 2.
In the following references, "before" is short for "before removing duplicate rows".
Positions of firsts appearances appear to be
A000071.
Without the removals we have
A090996.
-
Last/@DeleteDuplicates[Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2==#1+1&],{n,100}]]
A385890
Positions of first appearances in A245563 = run lengths of binary indices.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 14, 16, 22, 24, 28, 30, 32, 44, 46, 48, 54, 56, 60, 62, 64, 86, 88, 92, 94, 96, 108, 110, 112, 118, 120, 124, 126, 128, 172, 174, 176, 182, 184, 188, 190, 192, 214, 216, 220, 222, 224, 236, 238, 240, 246, 248, 252, 254, 256, 342, 344, 348
Offset: 1
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
q=Table[Length/@Split[bpe[n],#2==#1+1&],{n,0,1000}];
Select[Range[Length[q]-1],!MemberQ[Take[q,#-1],q[[#]]]&]
Comments