cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 262 results. Next

A386358 Primes without {7, 9} as digits.

Original entry on oeis.org

2, 3, 5, 11, 13, 23, 31, 41, 43, 53, 61, 83, 101, 103, 113, 131, 151, 163, 181, 211, 223, 233, 241, 251, 263, 281, 283, 311, 313, 331, 353, 383, 401, 421, 431, 433, 443, 461, 463, 503, 521, 523, 541, 563, 601, 613, 631, 641, 643, 653, 661, 683, 811, 821, 823
Offset: 1

Views

Author

Jason Bard, Jul 20 2025

Keywords

Crossrefs

Intersection of A038615 and A038617.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 3, 4, 5, 6, 8]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 7] == 0 && DigitCount[#, 10, 9] == 0 &]
  • PARI
    primes_with(, 1, [0, 1, 2, 3, 4, 5, 6, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("01234568"), 41))) # uses function/imports in A385776
    

A386075 Primes having only {0, 4, 7, 9} as digits.

Original entry on oeis.org

7, 47, 79, 97, 409, 449, 479, 499, 709, 797, 907, 947, 977, 997, 4007, 4049, 4079, 4099, 4409, 4447, 4799, 4909, 4999, 7079, 7477, 7499, 7907, 7949, 9007, 9049, 9479, 9497, 9749, 9907, 9949, 40009, 40099, 40499, 40709, 40949, 44449, 44497, 44777, 44797, 44909
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A261181, A261183, A384449, A385768.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 4, 7, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 4, 7, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 4, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0479"), 41))) # uses function/imports in A385776
    

A385957 Prime(n) is the a(n)-th prime having its distinct digits.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 5, 6, 3, 7, 3, 1, 1, 2, 1, 1, 4, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 1
Offset: 1

Views

Author

David A. Corneth, Jul 13 2025

Keywords

Examples

			a(1) = 1 as prime(1) = 2 is the first prime having its distinct digits {2}.
a(11) = 2 as prime(11) = 31 is the second prime having its disitinct digits {1, 3} (the first is 13).
a(32) = 4 as prime(32) = 131 is the fourth prime having its distinct digits {1, 3} (the first three are 13, 31 and 113).
		

Crossrefs

Programs

  • Mathematica
    Block[{c, f, p}, c[] := 0; f[x] := Union@ IntegerDigits[x]; Reap[Do[p = Prime[n]; Sow[++c[f[p] ] ], {n, 120}] ][[-1, 1]] ] (* Michael De Vlieger, Jul 13 2025 *)
  • PARI
    \\ See Corneth link

A386017 Primes having only {0, 1, 2, 4} as digits.

Original entry on oeis.org

2, 11, 41, 101, 211, 241, 401, 421, 1021, 1201, 2011, 2111, 2141, 2221, 2411, 2441, 4001, 4021, 4111, 4201, 4211, 4241, 4421, 4441, 10111, 10141, 10211, 11411, 12011, 12041, 12101, 12211, 12241, 12401, 12421, 14011, 14221, 14401, 14411, 20011, 20021, 20101, 20201
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Subsequence of A036956.
Supersequence of A036953, A260266, A260267.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 4]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 2, 4}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 2, 4]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0124"), 41))) # uses function/imports in A385776
    

A386018 Primes having only {0, 1, 2, 5} as digits.

Original entry on oeis.org

2, 5, 11, 101, 151, 211, 251, 521, 1021, 1051, 1151, 1201, 1511, 2011, 2111, 2221, 2251, 2521, 2551, 5011, 5021, 5051, 5101, 5501, 5521, 10111, 10151, 10211, 10501, 11251, 11551, 12011, 12101, 12211, 12251, 12511, 15101, 15121, 15511, 15551, 20011, 20021, 20051
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Supersequence of A036953, A199325, A385773.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 5]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 2, 5}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 2, 5]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0125"), 41))) # uses function/imports in A385776
    

A386019 Primes having only {0, 1, 2, 6} as digits.

Original entry on oeis.org

2, 11, 61, 101, 211, 601, 661, 1021, 1061, 1201, 1601, 1621, 2011, 2111, 2161, 2221, 2621, 6011, 6101, 6121, 6211, 6221, 6661, 10061, 10111, 10211, 10601, 11161, 11261, 11621, 12011, 12101, 12161, 12211, 12601, 12611, 16001, 16061, 16111, 16661, 20011, 20021
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Supersequence of A036953, A199326, A285774.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 6]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 2, 6}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 2, 6]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0126"), 41))) # uses function/imports in A385776
    

A386020 Primes having only {0, 1, 2, 7} as digits.

Original entry on oeis.org

2, 7, 11, 17, 71, 101, 107, 127, 211, 227, 271, 277, 701, 727, 1021, 1117, 1171, 1201, 1217, 1277, 1721, 1777, 2011, 2017, 2027, 2111, 2207, 2221, 2707, 2711, 2777, 7001, 7027, 7121, 7127, 7177, 7207, 7211, 7717, 7727, 10007, 10111, 10177, 10211, 10271, 10711
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Supersequence of A036953, A199327, A260889.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 2, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 2, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0127"), 41))) # uses function/imports in A385776
    

A386021 Primes having only {0, 1, 2, 8} as digits.

Original entry on oeis.org

2, 11, 101, 181, 211, 281, 811, 821, 881, 1021, 1181, 1201, 1801, 1811, 2011, 2081, 2111, 2221, 2281, 2801, 8011, 8081, 8101, 8111, 8221, 8821, 10111, 10181, 10211, 11801, 11821, 12011, 12101, 12211, 12281, 12821, 18121, 18181, 18211, 20011, 20021, 20101, 20201
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Subsequence of A173580.
Supersequence of A036953, A061247, A385775.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 8]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 2, 8}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 2, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0128"), 41))) # uses function/imports in A385776
    

A386022 Primes having only {0, 1, 2, 9} as digits.

Original entry on oeis.org

2, 11, 19, 29, 101, 109, 191, 199, 211, 229, 911, 919, 929, 991, 1009, 1019, 1021, 1091, 1109, 1129, 1201, 1229, 1291, 1901, 1999, 2011, 2029, 2099, 2111, 2129, 2221, 2909, 2999, 9001, 9011, 9029, 9091, 9109, 9199, 9209, 9221, 9901, 9929, 10009, 10091, 10099
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Supersequence of A036953, A199329, A385776.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 2, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 2, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0129"), 41))) # uses function/imports in A385776
    

A386023 Primes having only {0, 1, 3, 4} as digits.

Original entry on oeis.org

3, 11, 13, 31, 41, 43, 101, 103, 113, 131, 311, 313, 331, 401, 431, 433, 443, 1013, 1031, 1033, 1103, 1301, 1303, 1433, 3001, 3011, 3041, 3301, 3313, 3331, 3343, 3413, 3433, 4001, 4003, 4013, 4111, 4133, 4441, 10103, 10111, 10133, 10141, 10301, 10303, 10313, 10331
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Subsequence of A036956.
Supersequence of A199341, A260044, A260266.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 3, 4]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 3, 4}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 3, 4]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0134"), 41))) # uses function/imports in A385776
    
Previous Showing 41-50 of 262 results. Next