cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 419 results. Next

A387322 Decimal expansion of the fourth largest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

2, 4, 7, 1, 2, 9, 0, 5, 4, 5, 6, 4, 6, 9, 7, 8, 5, 7, 5, 4, 7, 3, 2, 5, 4, 7, 9, 6, 1, 5, 5, 2, 5, 3, 7, 9, 9, 4, 8, 5, 7, 4, 9, 3, 3, 3, 0, 8, 8, 6, 0, 0, 4, 9, 0, 5, 5, 9, 0, 9, 1, 7, 6, 3, 3, 7, 9, 5, 6, 7, 4, 2, 7, 0, 4, 6, 5, 3, 8, 4, 9, 4, 3, 2, 1, 6, 9, 2, 5, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 29 2025

Keywords

Comments

This is the dihedral angle between a triangular face and a square face at the edge where the antiprism and cupola parts of the solid meet.
Also the analogous dihedral angle in a gyroelongated square bicupola (Johnson solid J_45).

Examples

			2.4712905456469785754732547961552537994857493330886...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387321, A387323.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).
Cf. A385258 (J_45 volume), A385259 (J_45 surface area).

Programs

  • Mathematica
    First[RealDigits[Pi/4 + ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J23", "DihedralAngles"]], 4], 10, 100]]

Formula

Equals Pi/4 + arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = A003881 + arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).
Equals A003881 + A387323.

A387323 Decimal expansion of the smallest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

1, 6, 8, 5, 8, 9, 2, 3, 8, 2, 2, 4, 9, 5, 3, 0, 2, 6, 5, 8, 5, 7, 5, 9, 3, 9, 5, 0, 3, 3, 5, 3, 7, 8, 0, 7, 8, 4, 3, 6, 4, 5, 6, 9, 8, 3, 2, 4, 4, 8, 2, 4, 0, 3, 5, 3, 1, 5, 3, 5, 5, 6, 1, 5, 3, 0, 2, 6, 1, 3, 3, 2, 5, 4, 7, 4, 9, 8, 6, 2, 4, 4, 6, 6, 4, 6, 8, 3, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Aug 29 2025

Keywords

Comments

This is the dihedral angle between a triangular face and the octagonal face.

Examples

			1.6858923822495302658575939503353780784364569832448...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387321, A387322.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J23", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).

A387349 Positions of 0's in A387348.

Original entry on oeis.org

1, 4, 6, 7, 9, 11, 12, 14, 17, 19, 20, 22, 25, 27, 30, 32, 33, 35, 38, 40, 41, 43, 46, 48, 51, 53, 54, 56, 59, 61, 62, 64, 66, 67, 69, 72, 74, 75, 77, 80, 82, 85, 87, 88, 90, 93, 95, 96, 98, 100, 101, 103, 106, 108, 109, 111, 114, 116, 117, 119, 121, 122
Offset: 1

Views

Author

Clark Kimberling, Aug 27 2025

Keywords

Comments

This sequence together with A387350 and A387351 partition the positive integers. Conjecture: the difference sequence (3, 2, 1, 2, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, ... ) has exactly 3 distinct terms.

Crossrefs

Programs

  • Mathematica
    z = 300;
    A[n_, k_] := Module[{t, a, b}, t = (1 + Sqrt[5])/2;
    a = Floor[n*(t + 1) + 1 + t/2]; b = Round[a*t]; ({b, a} . MatrixPower[{{1, 1}, {1, 0}}, k])[[2]]];
    ts = Table[A[n, k], {n, 0, z - 1}, {k, 0, z - 1}];  (* A035506, Stolarsky array *)
    W[n_, k_] := Fibonacci[k + 1]  Floor[n*GoldenRatio] + (n - 1)  Fibonacci[k];
    tw = Table[W[n, k], {n, 1, z}, {k, 1, z}];   (* A035513, Wythoff array *)
    diff = tw - ts;
    u = Table[diff[[n]][[2]], {n, 1, z}]
    Flatten[Position[u, 0]]   (* A387349 *)
    Flatten[Position[u, 1]]   (* A387350 *)
    Flatten[Position[u, -1]]  (* A387351 *)

A387350 Positions of 1's in A387348.

Original entry on oeis.org

2, 5, 10, 13, 15, 18, 23, 26, 28, 31, 34, 36, 39, 44, 47, 49, 52, 57, 60, 65, 68, 70, 73, 78, 81, 83, 86, 89, 91, 94, 99, 102, 104, 107, 112, 115, 120, 123, 125, 128, 133, 136, 138, 141, 146, 149, 154, 157, 159, 162, 167, 170, 172, 175, 178, 180, 183, 188
Offset: 1

Views

Author

Clark Kimberling, Aug 27 2025

Keywords

Comments

This sequence together with A387349 and A387351 partition the positive integers.
Conjecture: the difference sequence, (3, 5, 3, 2, 3, 5, 3, 2, 3, 3, 2, 3, 5, 3, 2, 3, 5, 3, 5, ... ) has exactly 3 distinct terms.

Crossrefs

Programs

  • Mathematica
    z = 300;
    A[n_, k_] := Module[{t, a, b}, t = (1 + Sqrt[5])/2;
    a = Floor[n*(t + 1) + 1 + t/2]; b = Round[a*t]; ({b, a} . MatrixPower[{{1, 1}, {1, 0}}, k])[[2]]];
    ts = Table[A[n, k], {n, 0, z - 1}, {k, 0, z - 1}];  (* A035506, Stolarsky array *)
    W[n_, k_] := Fibonacci[k + 1]  Floor[n*GoldenRatio] + (n - 1)  Fibonacci[k];
    tw = Table[W[n, k], {n, 1, z}, {k, 1, z}];   (* A035513, Wythoff array *)
    diff = tw - ts;
    u = Table[diff[[n]][[2]], {n, 1, z}]
    Flatten[Position[u, 0]]   (* A387349 *)
    Flatten[Position[u, 1]]   (* A387350 *)
    Flatten[Position[u, -1]]  (* A387351 *)

A387351 Positions of -1's in A387348.

Original entry on oeis.org

3, 8, 16, 21, 24, 29, 37, 42, 45, 50, 55, 58, 63, 71, 76, 79, 84, 92, 97, 105, 110, 113, 118, 126, 131, 134, 139, 144, 147, 152, 160, 165, 168, 173, 181, 186, 194, 199, 202, 207, 215, 220, 223, 228, 236, 241, 249, 254, 257, 262, 270, 275, 278, 283, 288, 291
Offset: 1

Views

Author

Clark Kimberling, Aug 27 2025

Keywords

Comments

This sequence together with A387349 and A387350 partition the positive integers.
Conjecture: the difference sequence, (5, 8, 5, 3, 5, 8, 5, 3, 5, 5, 3, 5, 8, 5, 3, 5, 8, 5, 8, ... ) has exactly 3 distinct terms.

Crossrefs

Programs

  • Mathematica
    z = 300;
    A[n_, k_] := Module[{t, a, b}, t = (1 + Sqrt[5])/2;
    a = Floor[n*(t + 1) + 1 + t/2]; b = Round[a*t]; ({b, a} . MatrixPower[{{1, 1}, {1, 0}}, k])[[2]]];
    ts = Table[A[n, k], {n, 0, z - 1}, {k, 0, z - 1}];  (* A035506, Stolarsky array *)
    W[n_, k_] := Fibonacci[k + 1]  Floor[n*GoldenRatio] + (n - 1)  Fibonacci[k];
    tw = Table[W[n, k], {n, 1, z}, {k, 1, z}];   (* A035513, Wythoff array *)
    diff = tw - ts;
    u = Table[diff[[n]][[2]], {n, 1, z}]
    Flatten[Position[u, 0]]   (* A387349 *)
    Flatten[Position[u, 1]]   (* A387350 *)
    Flatten[Position[u, -1]]  (* A387351 *)

A387410 Numbers k such that the odd part of (1+k) divides (1 + odd part of A048250(k)), where A048250 is sum of the squarefree divisors of n.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 639, 1023, 2047, 2431, 4095, 5247, 8191, 14335, 16383, 32767, 40959, 44031, 57855, 65535, 90111, 126975, 131071, 204799, 229375, 262143, 376831, 524287, 923647, 1048575, 1632255, 2056191, 2097151, 2621439, 2744319, 4194303, 6815743, 8388607, 8781823, 16777215, 19922943, 24068095
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. The initial 1 is probably the only term that is not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A004767, A048250.
For similar sequences, see A336700, A387411, A387415, A387418, A387419.

Programs

A387412 The length of the maximal common prefix of the binary expansions of n and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1, 4, 3, 2, 2, 3, 2, 1, 1, 5, 1, 3, 1, 2, 3, 2, 3, 4, 4, 3, 1, 3, 3, 1, 4, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 3, 1, 1, 2, 1, 2, 1, 1, 4, 2, 3, 1, 3, 2, 4, 1, 1, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 4, 2, 6, 2, 3, 1, 4, 1, 1, 3, 5, 1, 3, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Crossrefs

Cf. also A387422.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A387412(n) = { my(a=binary(n), b=binary(A003961(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(i-1)); i++); (#a); };
    
  • Python
    from os.path import commonprefix
    from math import prod
    from sympy import factorint, nextprime
    def A387412(n): return len(commonprefix([bin(n)[2:],bin(prod(nextprime(p)**e for p, e in factorint(n).items()))[2:]])) # Chai Wah Wu, Sep 03 2025

Formula

a(n) = (1+A000523(n)) - A387413(n).

A387415 Numbers k such that the odd part of (1+k) divides (1 + odd part of A001615(k)), where A001615 is Dedekind's psi-function.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 2431, 4095, 8191, 14335, 16383, 27135, 32767, 44031, 57855, 65535, 75775, 131071, 204799, 262143, 376831, 524287, 667135, 923647, 1048575, 1441791, 1632255, 2056191, 2097151, 2315775, 2744319, 4194303, 6768639, 6815743, 8388607, 8781823, 16777215, 19922943, 24068095
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. The initial 1 is probably the only term that is not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A001615.
For similar sequences, see A336700, A387410, A387418, A387419.

Programs

A387418 Numbers k such that the odd part of (1+k) divides (1 + odd part of A034448(k)), where A034448 is unitary sigma (usigma).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 1791, 2047, 2431, 4095, 8191, 14335, 14847, 16383, 27391, 32767, 44031, 57855, 65535, 114687, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1632255, 2056191, 2097151, 2744319, 4194303, 6815743, 8388607, 8781823, 8978431, 12058623, 16777215, 19922943, 24068095
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. The initial 1 is probably the only term that is not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A002827, A004767, A034448.
For similar sequences, see A336700, A387410, A387415, A387419.

Programs

A387419 Numbers k such that the odd part of (1+k) divides (1 + odd part of A003959(k)), where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

1, 3, 4, 7, 15, 31, 40, 63, 127, 255, 511, 639, 1023, 2047, 2175, 2431, 4095, 5247, 8191, 14335, 16383, 32767, 40959, 44031, 57855, 65535, 90111, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1632255, 2056191, 2097151, 2621439, 2744319, 4194303, 6815743, 8388607, 8781823, 16777215, 19922943, 24068095
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. Terms 1, 4 and 40 are probably the only terms that are not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A003959, A004767.
For similar sequences, see A336700, A387410, A387411, A387415, A387418.

Programs

Previous Showing 41-50 of 419 results. Next