A386485 a(0) = 1; thereafter a(n) = 5*n^2 - 5*n + 2.
1, 2, 12, 32, 62, 102, 152, 212, 282, 362, 452, 552, 662, 782, 912, 1052, 1202, 1362, 1532, 1712, 1902, 2102, 2312, 2532, 2762, 3002, 3252, 3512, 3782, 4062, 4352, 4652, 4962, 5282, 5612, 5952, 6302, 6662, 7032, 7412, 7802, 8202, 8612, 9032, 9462, 9902, 10352, 10812, 11282, 11762, 12252, 12752, 13262, 13782, 14312
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
A386485[n_] := If[n == 0, 1, 5*n*(n - 1) + 2]; Array[A386485, 60, 0] (* or *) LinearRecurrence[{3, -3, 1}, {1, 2, 12, 32}, 60] (* Paolo Xausa, Aug 18 2025 *)
Formula
G.f.: -(x^3+9*x^2-x+1)/(x-1)^3.
Comments