cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: }, {q

}, {q's wiki page.

}, {q has authored 2 sequences.

A290011 Number of ways to connect n nodes with n+1 edges to form a 2-edge-connected graph.

Original entry on oeis.org

6, 85, 900, 9450, 104160, 1224720, 15422400, 207900000, 2993760000, 45924278400, 748280332800, 12913284384000, 235381386240000, 4520194398720000, 91233825306624000, 1931115968990208000, 42778526977105920000, 989887004576870400000, 23885015465274163200000
Offset: 4

Author

Eugene Y. Q. Shen, Jul 17 2017

Keywords

Crossrefs

Programs

  • Maple
    seq((n^2 + 2 *n - 18)* n!/24, n=6..30); # Robert Israel, Jul 19 2017
  • Mathematica
    Table[(n - 4) (n!/8) + (n (n - 1)/2 - 3) (n!/12), {n, 4, 22}] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    a(n) = (n - 4)*(n!/8) + (n*(n - 1)/2 - 3)*(n!/12); \\ Michel Marcus, Jul 18 2017

Formula

a(n) = (n - 4)*(n!/8) + (n*(n - 1)/2 - 3)*(n!/12) = (n^2 + 2 n - 18)*(n!/24).
E.g.f.: x^4*(3*x^2+x-6)/(24*(x-1)^3). - Robert Israel, Jul 19 2017

A173896 Exponents in the prime factorization of 43252003274489856000, the number of possible moves for a 3 X 3 X 3 Rubik's Cube: 2^27 * 3^14 * 5^3 * 7^2 * 11^1.

Original entry on oeis.org

27, 14, 3, 2, 1
Offset: 1

Author

Michael Moseley (nzmose(AT)q.com), Mar 01 2010

Keywords

Crossrefs

Cf. A075152.

Programs

  • Mathematica
    FactorInteger[43252003274489856000][[All,2]] (* Harvey P. Dale, Apr 11 2021 *)

Extensions

Edited by N. J. A. Sloane, May 16 2010