cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Aaron Geary

Aaron Geary's wiki page.

Aaron Geary has authored 1 sequences.

A382819 Number of Grassmannian permutations on [n] of order dividing 3.

Original entry on oeis.org

1, 1, 1, 3, 5, 7, 12, 17, 22, 31, 40, 49, 63, 77, 91, 111, 131, 151, 178, 205, 232, 267, 302, 337, 381, 425, 469, 523, 577, 631, 696, 761, 826, 903, 980, 1057, 1147, 1237, 1327, 1431, 1535, 1639, 1758, 1877, 1996, 2131, 2266, 2401, 2553, 2705, 2857, 3027, 3197, 3367, 3556, 3745, 3934
Offset: 0

Author

Aaron Geary, Apr 05 2025

Keywords

Examples

			For n = 4 there are 5 Grassmannian permutations whose cubes are the identity permutation: 1234, 3124, 1423, 2314, 1342, so a(4) = 5.
		

Crossrefs

Cf. A000325 (Grassmannian permutations), A001470 (permutations of order dividing 3).

Formula

a(n) = binomial(floor(n/3)+3,3) + binomial(floor((n-1)/3)+3,3) + binomial(floor((n-2)/3)+3,3) - n.
a(n) = 2*a(n-1) - a(n-2) + n/3 + 1 for n mod 3 = 0
a(n) = 2*a(n-1) - a(n-2) for n mod 3 <> 0.
a(n) ~ n^3/54. - Stefano Spezia, Apr 06 2025
G.f.: -(x^7-2*x^4+x-1)/((x^2+x+1)^2*(x-1)^4). - Alois P. Heinz, Apr 06 2025