cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Adam S. Jobson

Adam S. Jobson's wiki page.

Adam S. Jobson has authored 2 sequences.

A188288 In lunar arithmetic in base 2, the number of divisors of the number 11...1101 (n digits, the binary expansion of 2^n-3).

Original entry on oeis.org

0, 1, 0, 2, 2, 2, 4, 6, 10, 16, 31, 55, 100, 185, 345, 644, 1209, 2274, 4298, 8145, 15469, 29454, 56213, 107489, 205925, 395190, 759621, 1462282, 2818799, 5440705, 10513994, 20340794, 39393580, 76368240, 148185145, 287791544, 559386196, 1088144064, 2118283567, 4126561528, 8044217224
Offset: 0

Author

Adam S. Jobson and N. J. A. Sloane, Mar 26 2011

Keywords

Comments

a(1)=1 by convention. The g.f. is only a conjecture.

Examples

			a(6) = 4 since 111101 has the divisors 1, 101, 1101, 111101.
a(8) = 10 since 11111101 has the divisors 1, 101, 1001, 1101, 10101, 11001, 11101, 111001, 111101, 11111101.
		

Crossrefs

Formula

G.f.: x + x^3/(1-x) + Sum(x^l*(1-x)^2/(1-2*x+x^(l-1)-x^l+x^(l+2)), l=3..oo). - N. J. A. Sloane, Apr 19 2011

Extensions

a(1) in b-file corrected by Andrew Howroyd, Feb 22 2018

A188223 G.f.: (1+x^2+x^3)/(1-x-x^2-x^4-x^5).

Original entry on oeis.org

1, 1, 3, 5, 9, 16, 29, 53, 96, 174, 315, 571, 1035, 1876, 3400, 6162, 11168, 20241, 36685, 66488, 120503, 218400, 395829, 717402, 1300222, 2356527, 4270978, 7740736, 14029338, 25426823, 46083666, 83522203, 151375943, 274354307, 497240739, 901200915, 1633339800, 2960270965, 5365205811
Offset: 0

Author

Adam S. Jobson and N. J. A. Sloane, Mar 26 2011

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(1+x^2+x^3)/(1-x-x^2-x^4-x^5),{x,0,40}],x]  (* Harvey P. Dale, Mar 28 2011 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-4)+a(n-5).