A339865 Squarefree numbers k for which Q(k) - 6*k/Pi^2 sets a new record minimum, where Q(x) is the number of squarefree numbers up to x.
1, 29, 57, 173, 177, 365, 370, 377, 379, 381, 1090, 1865, 5578, 5590, 11326, 11333, 11863, 11865, 11877, 11882, 12657, 13881, 32285, 32313, 32833, 32853, 32881, 33034, 33041, 37558, 37561, 37571, 37573, 37577, 37689, 38729, 38858, 38863, 38865, 38873, 38877
Offset: 1
Keywords
Examples
Q(29) = 18 and Q(29) - 6*29/Pi^2 = 0.37011... is smaller than Q(1) - 6/Pi^2 = 0.39207...
Programs
-
Mathematica
s = Select[Range[50000], SquareFreeQ]; d = 6*s/Pi^2 - Range[Length[s]]; s[[Flatten[Position[d, #][[1]] & /@ Union @ FoldList[Max, d]]]] (* Amiram Eldar, Jan 27 2021 *)
-
PARI
lista(nn) = {my(m=oo, nb=0, x); forsquarefree(n=1, nn, nb++; x = nb - 6*n[1]/Pi^2; if (x < m, m = x; print1(n[1], ", ")););} \\ Michel Marcus, Jan 26 2021
Extensions
More terms from Jinyuan Wang, Jan 16 2021
Comments