cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Andrew R. Reiter

Andrew R. Reiter's wiki page.

Andrew R. Reiter has authored 4 sequences.

A262961 Crandall numbers: (2/Pi)^4 Integral_{t>=0} ([Pi I_0(t)]^2 - [K_0(t)]^2) I_0(t) [K_0(t)]^5 (2t)^(2n-1) dt.

Original entry on oeis.org

0, 1, 2, 15, 302, 12559, 900288, 98986140, 15459635718, 3251842717671, 885987204390450, 303482789415233775, 127643176985672421000, 64668997044706349592900, 38844990446097247188562800, 27296481783843922533011100000, 22184577644604207037479874293750
Offset: 1

Author

Andrew R. Reiter, Oct 05 2015

Keywords

Comments

Anton Mellit and David Broadhurst define the sequence to be the "round" of the integral, with the conjecture that this rounding is exact. No one seems to know how to prove that any of the integrals gives a rational number, let alone an integer.
a(0) is not defined: the integral diverges.
Several papers written by Jon Borwein with various coauthors, motivated by work of David Broadhurst, provide recurrence relations for moments of Bessel functions. - M. F. Hasler, Oct 11 2015
Named after the American physicist, mathematician and computer scientist Richard Eugene Crandall (1947-2012). - Amiram Eldar, Jun 23 2021

Crossrefs

Cf. A263413 for the largest prime factor of a(n).
See also A265079.

Programs

  • Maple
    ogf := x * BesselI(0,sqrt(x)/2)^4 * BesselK(0,sqrt(x)/2)^4;
    S := convert(simplify(asympt(ogf, x, 25)),polynom):
    seq(coeff(S,x,-i),i=0..24); # Mark van Hoeij, Oct 23 2017
  • Mathematica
    a[n_] := (t1 = NIntegrate[(2*t)^(2*n-1)*BesselI[0, t]^3*BesselK[0, t]^5, {t, 0, Infinity}, WorkingPrecision -> 50]; t2 = NIntegrate[(2*t)^(2*n-1) * BesselI[0, t]*BesselK[0, t]^7, {t, 0, Infinity}, WorkingPrecision -> 50]; Round[(2/Pi)^4*(Pi^2*t1-t2)]); Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 16}] (* Jean-François Alcover, Oct 06 2015, adapted from David Broadhurst's PARI script *)
  • PARI
    { default(realprecision,50); infty=[1]; for(n=1,16, t1=intnum(t=0,[infty,2], besseli(0,t)^3*besselk(0,t)^5*(2*t)^(2*n-1)); t2=intnum(t=0,[infty,6], besseli(0,t)*besselk(0,t)^7*(2*t)^(2*n-1)); print(n," ",round((2/Pi)^4*(t1*Pi^2-t2)))); } /* David Broadhurst, Oct 05 2015 */
    
  • PARI
    A262961(n,p=max(2*n,20),a=1)={default(realprecision,p); my(i,k,r=1); forprime(q=3,(n-1)\2,r*=q^(2*ceil(n/q)-4)); n=n*2-1; p=Pi^-2; round(intnum(t=0,[[1],a],((i=besseli(0,t))^3*(k=besselk(0,t))^5-i*k^7*p)*t^n)*2^(n+4)/r/Pi^2)*r} \\ It appears that (in PARI V.2.6.1) the parameter a=1 gives much better results for the numerical integration than the "correct" a=2 (resp. a=6 for the second term); combining all in one integral allows evaluation of the Bessel functions and t^(2n-1) only once. - M. F. Hasler, Oct 11 2015, improved thanks to a suggestion by David Broadhurst, Oct 16 2015

Formula

a(n) = (2/Pi)^4 Integral_{t>=0} ([Pi I_0(t)]^2 - [K_0(t)]^2) I_0(t) [K_0(t)]^5 (2t)^(2n-1) dt, where I_0(t) and K_0(t) are Bessel functions.
Floor(a(n+1)/a(n)) = A002943(n-2) = 2(n-2)(2n-3) for n > 7; with round() the relation holds for n = 3, ..., 9. - M. F. Hasler, Oct 11 2015

Extensions

Offset corrected by David Broadhurst, Oct 05 2015

A262089 a(0) = 0, a(1) = 1, a(n) = a(n-2)^2 + a(n-1)^3.

Original entry on oeis.org

0, 1, 1, 2, 9, 733, 393832918, 61085205568458236705261921, 227933478957258798550715296531141857176484963515197706487620785853119292327685
Offset: 0

Author

Andrew R. Reiter, Sep 10 2015

Keywords

Comments

Homogeneous cubic recurrence relation of order 2 with +1 coefficients.

Crossrefs

Cf. A262088.

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else Self(n-2)^2 + Self(n-1)^3: n in [1..10]]; // Vincenzo Librandi, Sep 11 2015
  • Mathematica
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n]==a[n-1]^3 + a[n-2]^2}, a, {n, 10}] (* Vincenzo Librandi, Sep 11 2015 *)

Extensions

Offset changed and terms a(0)-a(1) prepended by Vincenzo Librandi, Sep 11 2015

A262088 a(0)=0, a(1)=1, a(n) = -a(n-2)^2 - a(n-1)^3.

Original entry on oeis.org

0, 1, -1, 0, -1, 1, -2, 7, -347, 41781874, -72939661777729919216033, 388053169934428398618745564559557538054223536478283729487028027756061
Offset: 0

Author

Andrew R. Reiter, Sep 10 2015

Keywords

Comments

Homogeneous cubic recurrence relation of order 2 with -1 coefficients.
Next term is too large to be included.

Crossrefs

Cf. A262089.

Programs

  • Maple
    f:=proc(n) local i; option remember; if n=0 then 0
    elif n=1 then 1
    else -f(n-2)^2-f(n-1)^3; fi; end;
    [seq(f(n),n=0..10)]; # N. J. A. Sloane, Jun 16 2021
  • Mathematica
    RecurrenceTable[{a[n] == -a[n - 2]^2 - a[n - 1]^3, a[0] == 0, a[1] == 1}, a, {n, 1, 11}] (* Michael De Vlieger, Sep 11 2015 *)

Extensions

Data and offset corrected by N. J. A. Sloane, Jun 16 2021

A261812 First differences of A098842.

Original entry on oeis.org

-2, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0
Offset: 1

Author

Andrew R. Reiter, Sep 01 2015

Keywords

Programs

  • Mathematica
    Most@ Differences[ Last /@ Tally[ Max[ IntegerLength@#, 1] & /@ Fibonacci[ Range[0, 900]]]] (* Giovanni Resta, Sep 02 2015 *)
  • Python
    import sys
    import math
    F = [F0,F1] = [0,1]
    c = 2
    c0 = 0
    ll0 = 1
    while True:
            T = F[0] + F[1]
            F[0] = F[1]
            F[1] = T
            dfn = 1 + math.log10(T)
            ll = math.floor(dfn)
            if ll0 != ll:
                    if c0 != 0:
                            sys.stdout.write("%d," % (c-c0))
                    ll0 = ll
                    c0 = c
                    c = 1
                    continue
            c += 1

Formula

a(n) = A098842(n+1) - A098842(n).