A262961 Crandall numbers: (2/Pi)^4 Integral_{t>=0} ([Pi I_0(t)]^2 - [K_0(t)]^2) I_0(t) [K_0(t)]^5 (2t)^(2n-1) dt.
0, 1, 2, 15, 302, 12559, 900288, 98986140, 15459635718, 3251842717671, 885987204390450, 303482789415233775, 127643176985672421000, 64668997044706349592900, 38844990446097247188562800, 27296481783843922533011100000, 22184577644604207037479874293750
Offset: 1
Keywords
Links
- M. F. Hasler, Table of n, a(n) for n = 1..60; first 49 terms from D. Broadhurst. See also the extended table of 450 terms in the Broadhurst link below.
- David H. Bailey, Jonathan M. Borwein, David Broadhurst, M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
- David H. Bailey, Jonathan M. Borwein, David Broadhurst, M. L. Glasser, Elliptic integral evaluations of Bessel moments, J. Phys. A: Math. Theor., Vol. 41 (2008) 205203.
- Jonathan M. Borwein, Bruno Salvy, A Proof of a Recursion for Bessel Moments, Experiment. Math., Vol. 17, No. 2 (2008), pp. 223-230.
- David Broadhurst, Crandall Memorial Puzzle, Oct 04, 2015.
- David Broadhurst, Crandall Memorial Puzzle. [Cached copy, with permission]
- David Broadhurst, Crandall memorial puzzle: solution and heuristics.
- David Broadhurst, Crandall memorial puzzle: solution and heuristics. [Cached copy, with permission]
- David Broadhurst, Table of n, a(n) for n = 1..450.
- David Broadhurst, The largest prime (or noncomposite) factor of A262961(n) for n = 1..94.
- David Broadhurst, Feynman integrals, L-series and Kloosterman moments, arXiv:1604.03057 [physics.gen-ph], 2016. See Eq. 147.
- Hans Havermann and David Broadhurst, Crandall Numbers Factored.
- Yajun Zhou, Hilbert Transforms and Sum Rules of Bessel Moments, arXiv:1706.01068 [math.CA], 2017.
- Yajun Zhou, Some algebraic and arithmetic properties of Feynman diagrams, arXiv:1801.05555 [math.NT], 2018.
Programs
-
Maple
ogf := x * BesselI(0,sqrt(x)/2)^4 * BesselK(0,sqrt(x)/2)^4; S := convert(simplify(asympt(ogf, x, 25)),polynom): seq(coeff(S,x,-i),i=0..24); # Mark van Hoeij, Oct 23 2017
-
Mathematica
a[n_] := (t1 = NIntegrate[(2*t)^(2*n-1)*BesselI[0, t]^3*BesselK[0, t]^5, {t, 0, Infinity}, WorkingPrecision -> 50]; t2 = NIntegrate[(2*t)^(2*n-1) * BesselI[0, t]*BesselK[0, t]^7, {t, 0, Infinity}, WorkingPrecision -> 50]; Round[(2/Pi)^4*(Pi^2*t1-t2)]); Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 16}] (* Jean-François Alcover, Oct 06 2015, adapted from David Broadhurst's PARI script *)
-
PARI
{ default(realprecision,50); infty=[1]; for(n=1,16, t1=intnum(t=0,[infty,2], besseli(0,t)^3*besselk(0,t)^5*(2*t)^(2*n-1)); t2=intnum(t=0,[infty,6], besseli(0,t)*besselk(0,t)^7*(2*t)^(2*n-1)); print(n," ",round((2/Pi)^4*(t1*Pi^2-t2)))); } /* David Broadhurst, Oct 05 2015 */
-
PARI
A262961(n,p=max(2*n,20),a=1)={default(realprecision,p); my(i,k,r=1); forprime(q=3,(n-1)\2,r*=q^(2*ceil(n/q)-4)); n=n*2-1; p=Pi^-2; round(intnum(t=0,[[1],a],((i=besseli(0,t))^3*(k=besselk(0,t))^5-i*k^7*p)*t^n)*2^(n+4)/r/Pi^2)*r} \\ It appears that (in PARI V.2.6.1) the parameter a=1 gives much better results for the numerical integration than the "correct" a=2 (resp. a=6 for the second term); combining all in one integral allows evaluation of the Bessel functions and t^(2n-1) only once. - M. F. Hasler, Oct 11 2015, improved thanks to a suggestion by David Broadhurst, Oct 16 2015
Formula
a(n) = (2/Pi)^4 Integral_{t>=0} ([Pi I_0(t)]^2 - [K_0(t)]^2) I_0(t) [K_0(t)]^5 (2t)^(2n-1) dt, where I_0(t) and K_0(t) are Bessel functions.
Floor(a(n+1)/a(n)) = A002943(n-2) = 2(n-2)(2n-3) for n > 7; with round() the relation holds for n = 3, ..., 9. - M. F. Hasler, Oct 11 2015
Extensions
Offset corrected by David Broadhurst, Oct 05 2015
Comments