A345014 a(n) is the least nonnegative integer k such that 2^n - k is a Sophie Germain prime.
0, 1, 3, 5, 3, 11, 15, 5, 3, 5, 9, 23, 81, 83, 135, 143, 9, 23, 117, 5, 9, 161, 159, 317, 339, 203, 219, 95, 693, 35, 105, 5, 321, 425, 69, 23, 201, 191, 219, 983, 1101, 371, 747, 287, 429, 743, 2649, 1355, 81, 233, 237, 635, 2403, 395, 1125, 1997, 69, 9005
Offset: 1
Keywords
Links
- Artsiom Palkounikau, Table of n, a(n) for n = 1..3072
Programs
-
Mathematica
Table[k=0;While[!(PrimeQ[p=2^n-k]&&PrimeQ[2p+1]),k++];k,{n,58}] (* Giorgos Kalogeropoulos, Sep 15 2021 *)
-
PARI
a(n) = my(k=0,p); while (!(isprime(p=2^n-k) && isprime(2*p+1)), k++); k; \\ Michel Marcus, Sep 15 2021
-
Python
from sympy import isprime def a(n): k = 0 while True: if isprime(2 ** n - k) and isprime(2 * (2 ** n - k) + 1): return k k += 1 print([a(i) for i in range(1, 21)])
Formula
a(n) = (A057821(n+1) + 1)/2.