A293161 a(n) = ceiling(A293160(n)/2).
1, 1, 2, 3, 4, 7, 10, 16, 24, 39, 59, 96, 150, 233, 367, 588, 925, 1463, 2299, 3648, 5776, 9139, 14432, 22916, 36178, 57371
Offset: 1
Crossrefs
Cf. A293160.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Barry Carter has authored 4 sequences.
Row 4 of A294442 contains eight fractions: 1/5, 4/5, 3/7, 4/7, 2/7, 2/7, 3/8, 5/8. There are five distinct numerators, so a(4) = 5.
A049456 := proc(n, k) option remember; if n =1 then if k >= 0 and k <=1 then 1; else 0 ; end if; elif type(k, 'even') then procname(n-1, k/2) ; else procname(n-1, (k+1)/2)+procname(n-1, (k-1)/2) ; end if; end proc: # R. J. Mathar, Dec 12 2014 # A293160. This is not especially fast, but it will easily calculate the first 26 terms and confirm Barry Carter's values. rho:=n->[seq(A049456(n,k),k=0..2^(n-1))]; w:=n->nops(convert(rho(n),set)); [seq(w(n),n=1..26)]; # Alternative program: # S[n] is the list of fractions, written as pairs [i, j], in row n of Kepler's triangle; nc is the number of distinct numerators, and dc the number of distinct denominators S[0]:=[[1, 1]]; S[1]:=[[1, 2]]; nc:=[1, 1]; dc:=[1, 1]; for n from 2 to 18 do S[n]:=[]; for k from 1 to nops(S[n-1]) do t1:=S[n-1][k]; a:=[t1[1], t1[1]+t1[2]]; b:=[t1[2], t1[1]+t1[2]]; S[n]:=[op(S[n]), a, b]; od: listn:={}; for k from 1 to nops(S[n]) do listn:={op(listn), S[n][k][1]}; od: c:=nops(listn); nc:=[op(nc), c]; listd:={}; for k from 1 to nops(S[n]) do listd:={op(listd), S[n][k][2]}; od: c:=nops(listd); dc:=[op(dc), c]; od: nc; # this sequence dc; # A294444 # N. J. A. Sloane, Nov 20 2017
Length[Union[#]]& /@ NestList[Riffle[#, Total /@ Partition[#, 2, 1]]&, {1, 1}, 26] (* Jean-François Alcover, Mar 25 2020, after Harvey P. Dale in A049456 *) Map[Length@ Union@ Numerator@ # &, #] &@ Nest[Append[#, Flatten@ Map[{#1/(#1 + #2), #2/(#1 + #2)} & @@ {Numerator@ #, Denominator@ #} &, Last@ #]] &, {{1/1}, {1/2}}, 21] (* Michael De Vlieger, Apr 18 2018 *)
from itertools import chain, product from functools import reduce def A293160(n): return n if n <= 1 else len({1}|set(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if y else (x[0]+x[1],x[1]),chain(k,(1,)),(1,0))) for k in product((False,True),repeat=n-2))) # Chai Wah Wu, Jun 20 2022
A276707 := proc(n) local a,k; a := 0 ; k := nextprime(10^(n-1)) ; while k < 10^n do if isA069090(k) then a := a+1 ; end if; k := nextprime(k) ; end do: a ; end proc: # R. J. Mathar, Dec 15 2016
from sympy import primerange, isprime def ok(p): s = str(p) if len(s) == 1: return True return all(not isprime(int(s[:i])) for i in range(1, len(s))) def a(n): return sum(ok(p) for p in primerange(10**(n-1), 10**n)) print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Jul 03 2021
# faster version skipping bad prefixes from sympy import isprime, nextprime def a(n): if n == 1: return 4 p, c = nextprime(10**(n-1)), 0 while p < 10**n: s, fail = str(p), False for i in range(1, n): ti = int(s[:i]) if isprime(ti): fail = i; break if fail: p = nextprime((ti+1)*10**(n-i)) else: p, c = nextprime(p), c+1 return c print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Jul 03 2021
Comments