A365554 Number of increasing paths from the bottom to the top of the n-hypercube (as a graded poset) which first encounter a vector of isolated zeros at stage k, weighted by k.
2, 10, 60, 396, 2976, 25056, 234720, 2423520, 27371520, 335819520, 4449150720, 63318931200, 963548006400, 15614378035200, 268480048435200, 4882321001779200, 93627018326016000, 1888394741194752000, 39963486306078720000, 885457095215616000000
Offset: 2
Keywords
Examples
For n=5, an example vector of isolated 0's is 01011, which has k=3 1's. For n=3, the following paths (from 000 to 111) reach isolated 0's at k=1 many 1's (010): 000,010,011,111 000,010,110,111 The following paths reach isolated 0's only at k=2 1's: 000,100,110,111 000,100,101,111 000,001,101,111 000,001,011,111 So 2 paths of k=1 and 4 paths of k=2 are weighted total a(3) = 2*1 + 4*2 = 10.
Crossrefs
Cf. A067331.
Programs
-
PARI
a(n) = sum(k=n\2, n-1, k*(binomial(k+1,n-k)-binomial(k-1,n-k))*k!*(n-k)!) \\ Andrew Howroyd, Feb 23 2024
-
SageMath
k, n = var('k,n') sum((binomial(k+1,n-k)-binomial(k-1,n-k))*factorial(k)*factorial(n-k), k, floor(n/2),n-1)
Formula
a(n) = Sum_{k=floor(n/2)..n-1} k*(binomial(k+1,n-k)-binomial(k-1,n-k))*k!*(n-k)!.
Comments