cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David Wehlau

David Wehlau's wiki page.

David Wehlau has authored 2 sequences.

A307849 Number of ways to pay n dollars using Canadian coins, that is: nickels (5 cents), dimes (10 cents), quarters (25 cents), loonies (100 cents or $1 coins) and toonies ($2 coins).

Original entry on oeis.org

1, 30, 128, 362, 813, 1588, 2808, 4620, 7185, 10690, 15336, 21350, 28973, 38472, 50128, 64248, 81153, 101190, 124720, 152130, 183821, 220220, 261768, 308932, 362193, 422058, 489048, 563710, 646605, 738320, 839456, 950640, 1072513, 1205742, 1351008, 1509018
Offset: 0

Author

Lucien Haddad, David Wehlau, May 01 2019

Keywords

Comments

Our proof for the formula is based on an observation by David Wehlau that the number f(n) of ways to pay n dollars using nickels, dimes and quarters satisfies the recurrence f(n) = f(n-1) + 40*n - 12 and f(1)=29.

Examples

			For n = 1, a(1)=30. There are 30 ways to pay $1 using Canadian coins. They are all listed below. A vector [n1,n2,n3,n4,0] means n1 nickels plus n2 dimes plus n3 quarters plus n4 loonies make $1.
[0, 0, 0, 1, 0], [0, 0, 4, 0, 0], [0, 5, 2, 0, 0], [0, 10, 0, 0, 0], [1, 2, 3, 0, 0], [1, 7, 1, 0, 0], [2, 4, 2, 0, 0], [2, 9, 0, 0, 0], [3, 1, 3, 0, 0], [3, 6, 1, 0, 0], [4, 3, 2, 0, 0], [4, 8, 0, 0, 0], [5, 0, 3, 0, 0], [5, 5, 1, 0, 0], [6, 2, 2, 0, 0], [6, 7, 0, 0, 0], [7, 4, 1, 0, 0], [8, 1, 2, 0, 0], [8, 6, 0, 0, 0], [9, 3, 1, 0, 0], [10, 0, 2, 0, 0], [10, 5, 0, 0, 0], [11, 2, 1, 0, 0], [12, 4, 0, 0, 0], [13, 1, 1, 0, 0], [14, 3, 0, 0, 0], [15, 0, 1, 0, 0], [16, 2, 0, 0, 0], [18, 1, 0, 0, 0], [20, 0, 0, 0, 0].
		

Crossrefs

Programs

  • Magma
    [#RestrictedPartitions(100*n,{5,10,25,100,200}):n in [0..35]]; // Marius A. Burtea, May 06 2019
  • Mathematica
    LinearRecurrence[{4, -5, 0, 5, -4, 1}, {1, 30, 128, 362, 813, 1588}, 36] (* Jean-François Alcover, May 05 2019 *)
  • PARI
    Vec((1 + 26*x + 13*x^2) / ((1 - x)^5*(1 + x)) + O(x^40)) \\ Colin Barker, May 01 2019
    

Formula

a(n) = (5/6)*n^4 + (17/3)*n^3 + (149/12)*n^2 + (28/3)*n + (11 + 3*(-1)^(n+1))/8. Our proof is based on the fact that the number of ways f(n) to pay n dollars using nickels, dimes and quarters is f(n) = 20*n^2 + 8*n + 1. From this one can show that the number of ways g(n) to pay n dollars using nickels, dimes, quarters and loonies ($1 coins) is g(n) = (20/3)*n^3 + 14*n^2 + (25/3)*n + 1.
G.f.: -(13*x^2+26*x+1)/((x-1)^5*(x+1)). - Alois P. Heinz, May 01 2019
From Colin Barker, May 01 2019: (Start)
a(n) = (33 - 9*(-1)^n + 224*n + 298*n^2 + 136*n^3 + 20*n^4) / 24.
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n > 5.
(End)

A198434 Number of simple symmetric permutations of degree 2n (or 2n+1).

Original entry on oeis.org

2, 10, 90, 966, 12338, 181470, 3018082, 55995486, 1146939010, 25716746430, 626755197698, 16502357651966, 466944932413442, 14133259249586174, 455715081098876418, 15596665064842012158, 564724372634695925762, 21568978799171323200510, 866674159679235417061378, 36548294282449538711357438
Offset: 2

Author

David Wehlau, Oct 24 2011

Keywords

Comments

A permutation is simple if the only intervals that are fixed are the singletons and [1..m].
A permutation p is symmetric if i+j=m+1 implies p(i)+p(j)=m+1.
For example the permutations
1234 and 12345
2413 25314
are both simple and symmetric.
Symmetric simple permutations of degree 2n+1 correspond to simple permutations in the Weyl group of type B_n.
Symmetric simple permutations of degree 2n correspond to simple permutations in the Weyl group of type C_n.
These occur in pairs so all entries in this sequence will be even.

Examples

			The simple symmetric permutations of lowest degree are 2413, 3142, 25314, 41325.
		

Crossrefs

Cf. A111111.