A330292 a(n) = number of integers 1 <= k < n such that omega(k) <= omega(n), where omega = A001221.
0, 1, 2, 3, 4, 5, 5, 6, 7, 9, 8, 11, 9, 13, 14, 10, 11, 17, 12, 19, 20, 21, 13, 23, 14, 25, 15, 27, 16, 29, 17, 18, 31, 32, 33, 34, 19, 36, 37, 38, 20, 41, 21, 41, 42, 43, 22, 45, 23, 47, 48, 49, 24, 51, 52, 53, 54, 55, 25, 59, 26, 58, 59, 27, 61, 65, 28, 63, 64
Offset: 1
Examples
a(1) = 0: 1 has no predecessor, omega(1) = 0 by convention; a(2) = 1 because omega(2) = 1, 1 >= omega(0); a(3) = 2 because omega(3) = 1 and none of omega(1), omega(2) >= 1; a(4) = 3 because omega(4) = 1 and none of omega(1), omega(2), omega(3) >= 1.
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Block[{t = PrimeNu[n]}, Length@ Select[Range[n - 1], PrimeNu[#] <= t &]]; Array[a, 70] (* Giovanni Resta, Dec 10 2019 *)
-
PARI
for(n=1,70,my(omn=omega(n),m=0);for(k=1,n-1,if(omega(k)<=omn,m++));print1(m,", ")) \\ Hugo Pfoertner, Dec 10 2019
-
PARI
a(n) = my(omn=omega(n)); sum(k=1, n-1, omega(k) <= omn); \\ Michel Marcus, Dec 11 2019
-
Python
def primes(n): divisors = [ d for d in range(2,n//2+1) if n % d == 0 ] return [ d for d in divisors if \ all( d % od != 0 for od in divisors if od != d ) ] pprimes = {} for i in range(1, 10000): res = len(primes(i)) if res == 0: res = 1 pprimes[i] = res for k in range(1, 10000): s = 0 for i in range(1, k): if pprimes[i] <= pprimes[k]: s+=1 print(s)
Extensions
More terms from Giovanni Resta, Dec 10 2019
Comments