cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Evangelos G. Filothodoros

Evangelos G. Filothodoros's wiki page.

Evangelos G. Filothodoros has authored 2 sequences.

A363503 a(n+1) = 2*a(n) + A298338(n-1), with a(1) = 1.

Original entry on oeis.org

1, 3, 7, 15, 33, 71, 151, 319, 667, 1385, 2855, 5855, 11949, 24299, 49255, 99597, 200967, 404845, 814425, 1636581, 3285713, 6591853, 13216829, 26487447, 53062045, 106265431, 212759755, 425890401, 852381243, 1705734905, 3413043757, 6828635653, 13661395165
Offset: 1

Author

Keywords

Comments

a(n) is an odd number that appears in m* = log(a(n)*phi^2) for the fermion condensate mass in odd dimensional and large N Gross-Neveu model at imaginary chemical potential and finite temperature.

Examples

			a(1) = 1;
a(2) = 2*a(1) + 1 = 2*1 + 1 = 3;
etc.
		

Crossrefs

Cf. A104457 (phi^2), A298338.

Programs

A363773 a(n) = (4^(n+1) + (-1)^n + 5)/10.

Original entry on oeis.org

1, 2, 7, 26, 103, 410, 1639, 6554, 26215, 104858, 419431, 1677722, 6710887, 26843546, 107374183, 429496730, 1717986919, 6871947674, 27487790695, 109951162778, 439804651111, 1759218604442, 7036874417767, 28147497671066, 112589990684263, 450359962737050
Offset: 0

Author

Keywords

Comments

a(n) is a part of the numerator of the approximate solutions x(n) = (Pi/2)*(1+5/((4^(n+1)-(-1)^(n+1)))) = a(n)*Pi/A015521(n+1) of D_d(exp(-i*x(n))) = Cl_d(x(n)+Pi) = 0, where D_d(exp(-i*x(n))) is the Bloch-Wigner-Ramakrishnan polylogarithm function and Cl_d(x(n)+Pi) is the Clausen function for odd d >= 3 and n >= 0.

Crossrefs

Programs

Formula

a(n) = 1 + A037481(n).
G.f.: (1-2*x-2*x^2)/((x-1)*(4*x-1)*(x+1)).
E.g.f.: (4*e^(4*x) + e^-x + 5*e^x)/10.