cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Florent Martigne

Florent Martigne's wiki page.

Florent Martigne has authored 1 sequences.

A265496 Numbers n resulting from alternately applying the operations +, -, *, / to the last term and second to last term.

Original entry on oeis.org

1, 2, 3, 1, 3, 3, 6, 3, 18, 6, 24, 18, 432, 24, 456, 432, 196992, 456, 197448, 196992, 38895676416, 197448, 38895873864, 38895676416, 1512881323731695591424, 38895873864, 1512881323770591465288, 1512881323731695591424, 2288809899755012359448064967916189926490112
Offset: 0

Author

Florent Martigne, Dec 09 2015

Keywords

Examples

			a(0) = 1.
a(1) = 2.
a(2) = a(1) + a(0) =  2 + 1 =  3.
a(3) = a(2) - a(1) =  3 - 2 =  1.
a(4) = a(3) * a(2) =  1 * 3 =  3.
a(5) = a(4) / a(3) =  3 / 1 =  3.
a(6) = a(5) + a(4) =  3 + 3 =  6.
a(7) = a(6) - a(5) =  6 - 3 =  3.
a(8) = a(7) * a(6) =  3 * 6 = 18.
a(9) = a(8) / a(7) = 18 / 3 =  6.
		

Crossrefs

Cf. A131183.

Programs

  • BASIC
    input a(0)
    input a(1)
    for n=1 to 1000
    begin
      if n mod 4 =1 then a(n+1):=a(n)+a(n-1)
      if n mod 4 =2 then a(n+1):=a(n)-a(n-1)
      if n mod 4 =3 then a(n+1):=a(n)*a(n-1)
      if n mod 4 =0 then a(n+1):=a(n)/a(n-1)
      print a(n+1)
    end
    
  • Maple
    f:= proc(n) option remember;
      if n mod 4 = 2 then procname(n-1)+procname(n-2)
      elif n mod 4 = 3 then procname(n-1)-procname(n-2)
      elif n mod 4 = 0 then procname(n-1)*procname(n-2)
      else procname(n-3)
      fi
    end proc:
    f(0):= 1: f(1):= 2:
    seq(f(i),i=0..20); # Robert Israel, Dec 22 2015
  • Mathematica
    a[0] = 1; a[1] = 2; a[x_] := a[x] = Which[Mod[x, 4] == 2, a[x - 1] + a[x - 2], Mod[x, 4] == 3, a[x - 1] - a[x - 2], Mod[x, 4] == 0, a[x - 1] a[x - 2], Mod[x, 4] == 1, a[x - 1]/a[x - 2]]; Table[a@ n, {n, 0, 30}] (* Michael De Vlieger, Dec 22 2015 *)
  • PARI
    lista(nn) = {print1(x = 1, ", "); print1(y = 2, ", "); for (n=1, nn, if (n % 4 == 1, z = x+y); if (n % 4 == 2, z = y-x); if (n % 4 == 3, z = x*y); if (n % 4 == 0, z = y/x); print1(z, ", "); x = y; y = z;);} \\ Michel Marcus, Dec 22 2015

Formula

a(n) = n+1 for n in {0, 1}, otherwise
a(n+1) = a(n) + a(n-1) if n mod 4 = 1,
a(n+1) = a(n) - a(n-1) if n mod 4 = 2,
a(n+1) = a(n) * a(n-1) if n mod 4 = 3,
a(n+1) = a(n) / a(n-1) if n mod 4 = 0.
From Robert Israel, Dec 22 2015: (Start)
a(4n+8) = a(4n+4)^2*(1+1/a(4n)).
a(4n+9) = a(4n+5)*(a(4n+5)+a(4n+1)+1).
a(4n+10) = a(4n+6)*(a(4n+6)-a(4n+2)+1).
a(4n+11) = a(4n+7)^2*(1+1/a(4n+3)). (End)