cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: G. H. Faust

G. H. Faust's wiki page.

G. H. Faust has authored 1 sequences.

A245663 The first number k such that the sum of the base n digits of k! does not divide k!.

Original entry on oeis.org

10, 43, 86, 87, 188, 156, 291, 364, 432, 410, 7, 510, 4, 4, 4, 813, 4, 1079, 4, 1900, 6, 10, 6, 2330, 2147, 5, 3463, 2401, 7, 2522, 5, 3884, 5, 5, 8316, 3621, 5, 8, 8, 4866, 5, 5, 5, 5, 6302, 5, 5, 8616, 5
Offset: 2

Author

G. H. Faust, Jul 28 2014

Keywords

Comments

a(n)! > n. - Robert Israel, Aug 17 2014

Examples

			The sum of the base-2 digits of 10! is 1+1+0+1+1+1+0+1+0+1+1+1+1+1+0+0+0+0+0+0+0+0=11, which does not divide 10!.  Since the sum of the base-2 digits of k! divides k! for 0 <= k <= 9, a(2) = 10.
The sum of the base-3 digits of 43! is 106, which does not divide 43!.  Since the sum of the base-3 digits of k! divides k! for 0 <= k <= 42, a(3) = 43.
		

Crossrefs

Sum of the base n digits of k for n = 2, 3 and 10 respectively: A000120, A053735, A007953.
Cf. A066419.

Programs

  • Haskell
    fac :: Integer -> Integer
    fac 0 = 1
    fac n = foldl (*) 1 [2..n]
    base 0 b = []
    base a b = (a `mod` b) : base ((a-(a `mod` b)) `div` b) b
    bAse a b = reverse (base a b)
    sigbAse a b = foldl (+) 0 (bAse a b)
    f n = [k | k <- [1..], not ((fac k) `mod` (sigbAse (fac k) n) == 0)] !! 0
    main = print (map f [2..20]) -- generates values for n = 2 through 20. May be slow for values over 30.
    
  • Maple
    f:= proc(n)
      local f,k;
      for k from 1 do
        f:= k!;
        if f mod convert(convert(f,base,n),`+`) <> 0 then return k fi;
      od
    end proc:
    seq(f(n),n=2..30); # Robert Israel, Aug 10 2014
  • Mathematica
    a245663[n_Integer] := Module[{f = 2, k = 2}, While[Divisible[f, Total[IntegerDigits[f, n]]] == True, k++; f = k!]; k]; a245663 /@ Range[2, 50] (* Michael De Vlieger, Aug 15 2014 *)
  • PARI
    sumd(k, n) = my(d = digits(k, n)); sum(j=1, #d, d[j]);
    a(n) = {k = 2; fk = k!; while (fk % sumd(fk, n) == 0, k++; fk = k!); k;} \\ Michel Marcus, Aug 10 2014