cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hilarie Orman

Hilarie Orman's wiki page.

Hilarie Orman has authored 3 sequences.

A383691 Square numbers with distinct digits from 1-9 that have an initial string of two or more digits forming a square number.

Original entry on oeis.org

169, 256, 361, 3249, 16384, 18496, 36481, 81796, 237169, 729316, 2537649, 3481956, 5184729, 36517849, 81432576, 254817369, 361874529, 529874361
Offset: 1

Author

Hilarie Orman, May 05 2025

Keywords

Comments

The sequence is based on correspondence with Donald S. McDonald. He originated the idea and computed the complete list of terms.
The last two numbers in the sequence are perfect squares with square roots that are digit permutations of each other: 361874529 = 19023*19023 and 529874361 = 23019*23019.

Examples

			169 is a term, because 169 and 16 are both squares, and each digit of 169 is unique.
18496 is a term, because 18496 and 1849 are both squares, and each digit of 18496 is unique.
		

Crossrefs

Programs

  • Mathematica
    dd=Select[Range[11,25000]^2,IntegerLength[#]==CountDistinct[IntegerDigits[#]]&&ContainsNone[IntegerDigits[#],{0}]&];f[n_]:=AnyTrue[Table[FromDigits[Take[IntegerDigits[n],i]],{i,2,IntegerLength[n]-1}]^(1/2),IntegerQ];Select[dd,f[#]&] (* James C. McMahon, May 07 2025 *)

A340635 Number of free deltoidal hexecontahedron polykites with n faces.

Original entry on oeis.org

1, 2, 4, 10, 27, 80, 238, 751, 2374, 7608, 24371, 78341, 251269, 804594, 2565683, 8140581, 25650546, 80113477, 247328763, 752292342, 2245589193, 6549404314, 18573169874, 50940335705, 134325417269
Offset: 1

Author

Hilarie Orman, Jan 14 2021

Keywords

Comments

The surface of a deltoidal hexecontahedron has 60 congruent faces. Edge-connected faces are called polykites. Reflections are included separately in the counts. Polykites can have from 1 to 60 faces.
These polykites are counted up to the full icosahedral group (order 120) of the deltoidal hexecontahedron. - Peter Kagey, Apr 28 2025

Crossrefs

Cf. A057786.
Cf. A030137 (dodecahedron), A030138 (icosahedron).

Extensions

a(13)-a(25) from Bert Dobbelaere, Jun 13 2025

A327665 Fibonacci with binary selection.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 11, 20, 34, 56, 121, 244, 481, 938, 1832, 3540, 6757, 12708, 23410, 42328, 73764, 122889, 275122, 408967, 832560, 1580364, 2834653, 5044480, 8652446, 13975133, 29832886, 58354102, 112803422, 215061934, 401711254, 737267883, 1313954863, 2259026414
Offset: 0

Author

Hilarie Orman, Sep 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    e[n_] := Floor[Log2[n]]; a[0] = 0; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] + Sum[BitGet[a[n - 1], em - i] * a[n - 2 - i], {i, 0, (em = e[a[n - 1]])}]; Array[a, 38, 0] (* Amiram Eldar, Sep 28 2019 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 0; va[2] = 1; va[3] = 1; for (n=4, nn, my(b = binary(va[n-1])); va[n] = va[n-1] + sum(k=1, #b, b[k]*va[n-k-1]);); va;} \\ Michel Marcus, Sep 28 2019
    
  • Python
    def aupton(nn):
      alst = [0, 1, 1]
      for n in range(3, nn+1):
        b = list(map(int, bin(alst[n-1])[2:]))
        alst.append(alst[n-1] + sum(bi*alst[n-i-2] for i, bi in enumerate(b)))
      return alst[:nn+1]
    print(aupton(37)) # Michael S. Branicky, Jan 19 2021

Formula

a(n) = a(n-1) + Sum_{i=0..e(a(n-1))} b(a(n-1), e(a(n-1))-i)*a(n-i-2) where b(k, i) is the i-th bit in the binary expansion of k, with b(k, 0) being the low order bit of k, and e(k) = floor(log_2(k)). The initial terms are a(0) = 0, a(1) = 1. [edited by Michel Marcus, Sep 28 2019 and Michael S. Branicky, Jan 19 2021]