Josh Marza has authored 2 sequences.
A305324
Number of one-sided 'divisible' polyominoes of size 2^(n-1), where a 'divisible' polyomino is either a monomino (square) or a polyomino which can be separated into two identical 'divisible' polyominoes.
Original entry on oeis.org
1, 1, 6, 90, 3356, 232283, 27964488
Offset: 1
For n = 3 (polyominoes of size 4), the 'divisible' polyominoes are the I, O, J, L, S and Z tetrominoes. The T tetromino is not 'divisible'.
Definition changed and more terms added by
John Mason, Sep 20 2022
A293010
a(n) is the smallest x > 2 to satisfy pi(x-1)/(x-1)^n < pi(x)/x^n, where pi(x) is the prime counting function (A000720).
Original entry on oeis.org
3, 11, 29, 127, 347, 1087, 3079, 8419, 23531, 64553, 175211, 480881, 1304519, 3523901, 9558533, 25874767, 70115473, 189961193, 514272463, 1394193607, 3779851091, 10246935679, 27788566133, 75370121191, 204475052401, 554805820477, 1505578023841, 4086199302077
Offset: 1
For n=3, the first integer which satisfies pi(x-1)/((x-1)^3) < pi(x)/(x^3) is 29 = a(3).
-
For[j = 1, j < 11, j++, For[i = 2, i < 1000000 i++, If[(PrimePi[i]/(i^j)) - (PrimePi[i-1]/((i-1)^j)) > 0, Print[i] Break[]]]]
-
a(n) = my(x=3); while(primepi(x-1)/(x-1)^n >= primepi(x)/x^n, x++); x; \\ Michel Marcus, Oct 02 2017
-
upto(u)=my(t = 1, n = 1, logt = 0, logtm1, logp, logpm1, res = List()); forprime(p = 3, u, t++; logtm1 = logt; logt = log(t); logp = log(p); logpm1 = log(p - 1); if(logtm1 + n * logp < logt + n*logpm1, listput(res, p); n++)); res \\ David A. Corneth, Oct 02 2017
Comments