cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Lucas Bang

Lucas Bang's wiki page.

Lucas Bang has authored 1 sequences.

A363165 The number of spanning trees of the ladder graph L_n up to automorphisms of L_n.

Original entry on oeis.org

1, 1, 6, 17, 59, 204, 750, 2746, 10215, 37936, 141468, 527283, 1967449, 7340090, 27392124, 102219380, 381482477, 1423676862, 5313214098, 19829053909, 74002960983, 276182321224, 1030726172586, 3846720619566, 14356155740947, 53577895814828, 199955425410792
Offset: 1

Author

Mithra Karamchedu and Lucas Bang, Jul 06 2023

Keywords

Comments

The ladder graph L_n is the 2 X n grid graph.
L_n has two automorphisms when n = 1, eight automorphisms when n = 2, and four automorphisms when n >= 3.
When n = 1, Aut(L_n) = D_2; when n = 2, Aut(L_n) = D_8 (D_n is the dihedral group of order n). When n >= 3, Aut(L_n) = {e, h, v, r}, consisting of the identity (e), horizontal flip (h), vertical flip (v), and rotation (r = hv). For n >= 3, Aut(L_n) is isomorphic to the Klein four-group.

Examples

			For n = 3, the a(3) = 6 nonequivalent spanning trees are:
+   +   +---+   +---+   +   +   +   +   +---+
|   |   |       |       |   |   |   |   |
+---+   +---+   +---+   +---+   +   +   +   +
    |   |           |   |   |   |   |   |   |
+---+   +---+   +---+   +   +   +---+   +---+
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1 || n == 2, 1, FullSimplify[n/4 + ((2 + Sqrt[3])^n - (2 -Sqrt[3])^n)/(8*Sqrt[3]) + If [OddQ[n], ((2 + Sqrt[3])^(n/2) + (2 - Sqrt[3])^(n/2))/(2*Sqrt[6]), ((2 + Sqrt[3])^(n/2) - (2 - Sqrt[3])^(n/2))/(4*Sqrt[3])]]]

Formula

a(1) = 1, a(2) = 1, for n >= 3:
a(n) = A001353(n)/4 + A048788(n)/2 + n/4, for n odd, and
a(n) = A001353(n)/4 + A001353(n/2)/2 + n/4, for n even.
For n >= 3, a closed form is:
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(8*sqrt(3)) + ((2 + sqrt(3))^(n/2) + (2 - sqrt(3))^(n/2))/(2*sqrt(6)) + n/4, for n odd, and
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(8*sqrt(3)) + ((2 + sqrt(3))^(n/2) - (2 - sqrt(3))^(n/2))/(4*sqrt(3)) + n/4, for n even.
a(n) = 6*a(n-1) - 6*a(n-2) - 18*a(n-3) + 38*a(n-4) - 18*a(n-5) - 6*a(n-6) + 6*a(n-7) - a(n-8) for n > 10. - Peter Kagey, Jul 08 2023
G.f.: x*(1 - 5*x + 6*x^2 + 5*x^3 - 27*x^4 + 40*x^5 - 18*x^6 - 6*x^7 + 6*x^8 - x^9)/((1 - x)^2*(1 - 4*x + x^2)*(1 - 4*x^2 + x^4)). - Stefano Spezia, Jul 09 2023