cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mithra Karamchedu

Mithra Karamchedu's wiki page.

Mithra Karamchedu has authored 4 sequences.

A372224 The size of the smallest critical set of hints needed to uniquely solve a generalized n X n Sudoku board.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 12, 14, 17
Offset: 1

Keywords

Comments

A "critical set" is a collection of Sudoku hints that uniquely determines a solution to the puzzle, but such that removing any hint no longer does so.
Our generalized n X n Sudoku board consists of n rows, n columns, and n lengthwise rectangular subgrids with dimensions A033676(n) X A033677(n). Every row, every column, and every subgrid must contain the digits 1..n.
When n is prime, a(n) is the size of smallest critical set of an n X n Latin square, which is conjectured to equal A002620(n).

Examples

			Below is a critical set of size 17 on the 9 X 9 Sudoku grid:
.
  +-------+-------+-------+
  |       | 8   1 |       |
  |       |       |   4 3 |
  | 5     |       |       |
  +-------+-------+-------+
  |       |   7   | 8     |
  |       |       | 1     |
  |   2   |   3   |       |
  +-------+-------+-------+
  | 6     |       |   7 5 |
  |     3 | 4     |       |
  |       | 2     | 6     |
  +-------+-------+-------+
.
which uniquely determines the solution:
.
  +-------+-------+-------+
  | 2 3 7 | 8 4 1 | 5 6 9 |
  | 1 8 6 | 7 9 5 | 2 4 3 |
  | 5 9 4 | 3 2 6 | 7 1 8 |
  +-------+-------+-------+
  | 3 1 5 | 6 7 4 | 8 9 2 |
  | 4 6 9 | 5 8 2 | 1 3 7 |
  | 7 2 8 | 1 3 9 | 4 5 6 |
  +-------+-------+-------+
  | 6 4 2 | 9 1 8 | 3 7 5 |
  | 8 5 3 | 4 6 7 | 9 2 1 |
  | 9 7 1 | 2 5 3 | 6 8 4 |
  +-------+-------+-------+
		

References

  • J. N. Cooper and A. Kirkpatrick, Critical Sets for Sudoku and General Graphs, Discrete Mathematics, 315-316 (2014), 112-119.
  • C. Lass, Minimal number of clues for Sudokus, Central European Journal of Computer Science, 2 (2012).
  • G. McGuire et al., There Is No 16-Clue Sudoku: Solving the Sudoku Minimum Number of Clues Problem via Hitting Set Enumeration, Experimental Mathematics, 23 (2012), 190-217.

Crossrefs

Formula

When n is prime, a(n) is conjectured to equal A002620(n).
When n is square, a(n) = A198297(n).

A367055 Triangle read by rows: T(n, k) = A000120(n) + A000120(k), 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 2, 3, 3, 4, 1, 2, 2, 3, 2, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 4, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3
Offset: 0

Author

Mithra Karamchedu and Sophia Pi, Nov 03 2023

Keywords

Comments

T(n, k) is the sum of the Hamming weight of n and the Hamming weight of k.
See A365618 for a table read by antidiagonals.

Examples

			Triangle begins:
      k=0  1  2  3  4  5
  n=0:  0;
  n=1:  1, 2;
  n=2:  1, 2, 2;
  n=3:  2, 3, 3, 4;
  n=4:  1, 2, 2, 3, 2;
  n=5:  2, 3, 3, 4, 3, 4;
        ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := DigitCount[n, 2, 1] + DigitCount[k, 2, 1]
  • Python
    from math import comb, isqrt
    def A367055(n): return (n-comb(r:=(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)),2)).bit_count()+(r-1).bit_count() # Chai Wah Wu, Nov 11 2024

Formula

T(n, k) = A000120(n) + A000120(k).

A365618 Table read by antidiagonals: T(n, k) = A000120(n) + A000120(k).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 3, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 1, 4, 3, 4, 2, 4, 3, 4, 1, 2, 2, 4, 4, 3, 3, 4, 4, 2, 2, 2, 3, 2, 5, 3, 4, 3, 5, 2, 3, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 2, 4, 3, 4, 2, 5, 4, 5, 2
Offset: 0

Author

Mithra Karamchedu and Sophia Pi, Nov 03 2023

Keywords

Comments

T(n, k) is the sum of the Hamming weight of n and the Hamming weight of k.
Picking all points (n, k) such that T(n, k) <= N for some natural number N iteratively generates a Sierpinski-like fractal H. To generate the fractal, fix i and produce the set H_i = {(x, y) in [0, 1)^2 : T(floor(x * 2^i), floor(y * 2^i)) <= i}. Then, define the "limit fractal" H = {(x, y) in [0, 1)^2 : there exists N such that (x, y) is in H_i for all i >= N}.
The table is symmetric, T(n, k) = T(k, n).
See A367055 for a triangle read by rows.

Examples

			The table begins:
      k=0 1 2 3 4
  n=0:  0 1 1 2 1 ...
  n=1:  1 2 2 3 2 ...
  n=2:  1 2 2 3 2 ...
  n=3:  2 3 3 4 3 ...
  n=4:  1 2 2 3 2 ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := DigitCount[n, 2, 1] + DigitCount[k, 2, 1]

Formula

T(n, k) = A000120(n) + A000120(k).
If n_1 and n_2 share no 1 bits in common, then T(n_1 + n_2, k) = A000120(n_1) + A000120(n_2) + A000120(k).

A363165 The number of spanning trees of the ladder graph L_n up to automorphisms of L_n.

Original entry on oeis.org

1, 1, 6, 17, 59, 204, 750, 2746, 10215, 37936, 141468, 527283, 1967449, 7340090, 27392124, 102219380, 381482477, 1423676862, 5313214098, 19829053909, 74002960983, 276182321224, 1030726172586, 3846720619566, 14356155740947, 53577895814828, 199955425410792
Offset: 1

Author

Mithra Karamchedu and Lucas Bang, Jul 06 2023

Keywords

Comments

The ladder graph L_n is the 2 X n grid graph.
L_n has two automorphisms when n = 1, eight automorphisms when n = 2, and four automorphisms when n >= 3.
When n = 1, Aut(L_n) = D_2; when n = 2, Aut(L_n) = D_8 (D_n is the dihedral group of order n). When n >= 3, Aut(L_n) = {e, h, v, r}, consisting of the identity (e), horizontal flip (h), vertical flip (v), and rotation (r = hv). For n >= 3, Aut(L_n) is isomorphic to the Klein four-group.

Examples

			For n = 3, the a(3) = 6 nonequivalent spanning trees are:
+   +   +---+   +---+   +   +   +   +   +---+
|   |   |       |       |   |   |   |   |
+---+   +---+   +---+   +---+   +   +   +   +
    |   |           |   |   |   |   |   |   |
+---+   +---+   +---+   +   +   +---+   +---+
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1 || n == 2, 1, FullSimplify[n/4 + ((2 + Sqrt[3])^n - (2 -Sqrt[3])^n)/(8*Sqrt[3]) + If [OddQ[n], ((2 + Sqrt[3])^(n/2) + (2 - Sqrt[3])^(n/2))/(2*Sqrt[6]), ((2 + Sqrt[3])^(n/2) - (2 - Sqrt[3])^(n/2))/(4*Sqrt[3])]]]

Formula

a(1) = 1, a(2) = 1, for n >= 3:
a(n) = A001353(n)/4 + A048788(n)/2 + n/4, for n odd, and
a(n) = A001353(n)/4 + A001353(n/2)/2 + n/4, for n even.
For n >= 3, a closed form is:
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(8*sqrt(3)) + ((2 + sqrt(3))^(n/2) + (2 - sqrt(3))^(n/2))/(2*sqrt(6)) + n/4, for n odd, and
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(8*sqrt(3)) + ((2 + sqrt(3))^(n/2) - (2 - sqrt(3))^(n/2))/(4*sqrt(3)) + n/4, for n even.
a(n) = 6*a(n-1) - 6*a(n-2) - 18*a(n-3) + 38*a(n-4) - 18*a(n-5) - 6*a(n-6) + 6*a(n-7) - a(n-8) for n > 10. - Peter Kagey, Jul 08 2023
G.f.: x*(1 - 5*x + 6*x^2 + 5*x^3 - 27*x^4 + 40*x^5 - 18*x^6 - 6*x^7 + 6*x^8 - x^9)/((1 - x)^2*(1 - 4*x + x^2)*(1 - 4*x^2 + x^4)). - Stefano Spezia, Jul 09 2023