cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Matteo Albanese

Matteo Albanese's wiki page.

Matteo Albanese has authored 1 sequences.

A326418 Nonnegative numbers k such that, in decimal representation, the subsequence of digits of k^2 occupying an odd position is equal to the digits of k.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 50, 60, 76, 100, 105, 110, 500, 501, 505, 506, 600, 605, 756, 760, 826, 1000, 1001, 1050, 1100, 5000, 5010, 5050, 5060, 5941, 6000, 6050, 7560, 7600, 8260, 10000, 10005, 10010, 10500, 10505, 11000, 12731
Offset: 1

Keywords

Comments

If k is in the sequence then so is 10*k. - David A. Corneth, Sep 29 2019
No term starts with the digit 2. - Chai Wah Wu, Apr 04 2023

Examples

			5^2 = 25, whose first digit is 5, hence 5 is a term of the sequence.
11^2 = 121, whose first and third digit are (1, 1), hence 11 is a term of the sequence.
756^2 = 571536, whose digits in odd positions - starting from the least significant one - are (7, 5, 6), hence 756 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 13000], Reverse@ #[[-Range[1, Length@ #, 2]]] &@ IntegerDigits[#^2] === IntegerDigits[#] &] (* Michael De Vlieger, Oct 06 2019 *)
  • PARI
    isok(n) = my(d=Vecrev(digits(n^2))); fromdigits(Vecrev(vector((#d+1)\2, k, d[2*k-1]))) == n; \\ Michel Marcus, Oct 01 2019
    
  • Python
    def ok(n): s = str(n*n); return n == int("".join(s[1-len(s)%2::2]))
    print(list(filter(ok, range(13000)))) # Michael S. Branicky, Sep 10 2021