cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Omran Kouba

Omran Kouba's wiki page.

Omran Kouba has authored 1 sequences.

A306888 Number of inequivalent colorful necklaces.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 3, 8, 11, 20, 31, 64, 105, 202, 367, 696, 1285, 2452, 4599, 8776, 16651, 31838, 60787, 116640, 223697, 430396, 828525, 1598228, 3085465, 5966000, 11545611, 22371000, 43383571, 84217616, 163617805, 318150720, 619094385, 1205614054, 2349384031, 4581315968
Offset: 1

Author

Omran Kouba, Mar 15 2019

Keywords

Comments

Cf. Bernstein-Kouba paper, function K(n).
A necklace or bracelet is colorful if no pair of adjacent beads are the same color. In addition, two necklaces are equivalent if one results from the other by permuting its colors, and two bracelets are equivalent if one results from the other by either permuting its colors or reversing the order of the beads; a bracelet is thus a necklace that can be turned over.

Programs

  • Maple
    # Maple code from N. J. A. Sloane, Mar 15 2019
    p:=numtheory[phi]; M:=80;
    fA:=proc(n) local d,t1; global p; t1:=0; # A_n, A306896
    for d from 1 to n do
    if (n mod d) = 0 then t1:=t1 + (2^d+ 2*(-1)^d)*p(n/d); fi; od; t1; end;
    [seq(fA(n),n=1..M)]; # A306896
    fB:=proc(n) local d,t1; global p; t1:=0; # B_n, A306898
    for d from 1 to n do
    if ((n mod 2) = 0 and ((n/2) mod d) = 0) then t1:=t1 + 2^d*p(n/d); fi; od; t1; end;
    [seq(fB(2*n),n=1..M)]; # A306898
    fC:=proc(n) local d,t1; global p; t1:=0; # C_n, A306899
    for d from 1 to n do
    if ((n mod 3) = 0 and ((n/3) mod d) = 0)
    then t1:=t1 + (2^d - (-1)^d)*p(n/d); fi; od; t1; end;
    [seq(fC(3*n),n=1..M)]; # A306899
    K:=proc(n) global fA, fB, fC;
    (fA(n)+3*fB(n)+2*fC(n))/(6*n); end;
    [seq(K(n),n=1..M)]; # A306888
  • Mathematica
    f[n_] := DivisorSum[n, (2^# + 2 (-1)^#) EulerPhi[n/#] &]; g[n_] := DivisorSum[n, 2^# *EulerPhi[n/#] &, And[Mod[n, 2] == 0, Mod[(n/2), #] == 0] &]; h[n_] := DivisorSum[n, (2^# - (-1)^#) EulerPhi[n/#] &, And[Mod[n, 3] == 0, Mod[(n/3), #] == 0] &]; Array[(f[#] + 3 g[#] + 2 h[#])/(6 #) &, 40] (* Michael De Vlieger, Mar 18 2019 *)
    (* Alternatively, using Remark 4.4 from the article *)
    K[n_]:=Floor[ 1/(6 n) DivisorSum[n, 2^(n/#)(1 + 4/3 Cos[# Pi/2]^2
    Sin[# Pi/3]^2) GCD[#,6] EulerPhi[#] &]]; Table[K[n],{n,1,500}]
    (* Omran Kouba, Apr 11 2019; typo fixed by Jean-François Alcover, May 01 2020 *)
  • PARI
    a(n) = round(sumdiv(n, d, (1 + (4/3) * (1-(d%2)) * (if (d%3, 3/4))) * gcd(d, 6) * eulerphi(d) * 2^(n/d))/(6*n)); \\ Michel Marcus, May 01 2020; corrected Jun 15 2022

Formula

a(n) = floor(Sum_{d|n} (1 + 4/3 * cos(d * Pi/2)^2 * sin(d * Pi/3)^2 ) * gcd(d,6) * phi(d) * 2^(n/d)/(6*n)). [corrected by Omran Kouba, Apr 11 2019]
Eq. (4.15) of Bernstein-Kouba expresses K(n) in terms of A_n, B_n, C_n, and the Maple code below calculates all four sequences and confirms the values given here. - N. J. A. Sloane, Mar 15 2019
a(n) = Sum_{k=1..3} A327396(n, k). - Andrew Howroyd, Oct 09 2019
a(n) ~ 2^(n-1) / (3*n). - Vaclav Kotesovec, May 02 2020