cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Oren Meisner

Oren Meisner's wiki page.

Oren Meisner has authored 1 sequences.

A318053 a(n) = ceiling(sqrt(2*a(n-1)*a(n-2))), a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 31, 39, 50, 63, 80, 101, 128, 161, 204, 257, 324, 409, 515, 650, 819, 1032, 1301, 1639, 2066, 2603, 3280, 4133, 5207, 6561, 8266, 10415, 13122, 16533, 20831, 26245, 33067, 41662, 52491, 66135, 83325
Offset: 1

Author

Oren Meisner, Aug 14 2018

Keywords

Comments

a(n)/a(n-1) ~ cube root of 2.
a(n)/a(n-3) ~ 2.

Examples

			a(12) = ceiling(sqrt(2*a(11)*a(10))) = ceiling(sqrt(2*15*12)) = ceiling(sqrt(360)) = 19.
		

Crossrefs

Cf. A017981.

Programs

  • Mathematica
    a[n_] := a[n] = If[n<3, 1, Ceiling[Sqrt[2 a[n-1] a[n-2]]]]; Array[a, 50] (* Giovanni Resta, Nov 26 2019 *)
    RecurrenceTable[{a[1]==a[2]==1,a[n]==Ceiling[Sqrt[2a[n-1]a[n-2]]]},a,{n,50}] (* Harvey P. Dale, Apr 13 2020 *)
  • Python
    import math
    r = []
    r.append(1)
    r.append(1)
    i = 2
    while i < 1001:
      r.append(math.ceil(math.sqrt(2*r[i-1]*r[i-2])))
      i += 1
    print(r)