cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paolo Omodei-Zorini

Paolo Omodei-Zorini's wiki page.

Paolo Omodei-Zorini has authored 2 sequences.

A261556 Numbers that divide the sum of the product of the factorials of their digits and the sum of the factorials of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 17, 54, 86, 573, 768, 999, 6143, 94584, 159287, 27167549, 40548073, 72382636, 131092614, 340720926, 1161216721, 2955383683, 3892089702, 5304046976, 6554754648, 72338498624, 279445396448, 331043595868, 466026097373, 962499474063, 3082891291712
Offset: 1

Author

Paolo Omodei-Zorini, Aug 24 2015

Keywords

Examples

			54 is in the list because 5! = 120, 4! = 24,  120*24=2880, 120+24=144, 2880+144=3024, 3024/54=56.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{d = IntegerDigits[n]!}, Mod[Times @@ d + Total@ d, n] == 0]; Select[Range@ 1000000, fQ] (* Michael De Vlieger, Aug 26 2015 *)
  • PARI
    isok(n) = my(d = digits(n)); ((sum(k=1,#d, d[k]!)+prod(k=1,#d, d[k]!)) % n) == 0; \\ Michel Marcus, Aug 25 2015

Extensions

a(24)-a(25) from Jon E. Schoenfield, Aug 24 2015
a(26)-a(30) from Giovanni Resta, Aug 26 2015
a(31)-a(34) from Chai Wah Wu, May 04 2019
a(35) from Giovanni Resta, Aug 19 2019

A261511 Twin primes with both terms having distinct digits in descending order.

Original entry on oeis.org

3, 5, 7, 41, 43, 71, 73, 641, 643, 76541, 76543, 87641, 87643
Offset: 1

Author

Paolo Omodei-Zorini, Aug 22 2015

Comments

Numbers in this list are the pairs of twin primes listed in A052014 with both terms having distinct digits in descending order

Crossrefs

Programs

  • Mathematica
    dsc[n_] := 0 > Max@ Differences@ IntegerDigits@n; Union@ Flatten@ Select[ Partition[ Prime@ Range@ 9000, 2, 1], #[[2]] - #[[1]] == 2 && And @@ dsc /@ # &] (* Giovanni Resta, Aug 26 2015 *)
  • PARI
    lista(nn=100000) = {v = []; forprime(p=2, nn, if (isprime(p+2) && (d=digits(p)) && (vecsort(d,,12)==d) && (dd=digits(p+2)) && (vecsort(dd,,12)==dd), v = concat(v, p); v = concat(v,p+2));); vecsort(v,,8);} \\ Michel Marcus, Aug 23 2015