cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Patrick C. Schneider

Patrick C. Schneider's wiki page.

Patrick C. Schneider has authored 6 sequences.

A305274 Decimal expansion of x such that x^(x+3) = x^x + x^3.

Original entry on oeis.org

1, 3, 9, 3, 0, 9, 1, 5, 4, 5, 3, 8, 5, 7, 1, 0, 5, 9, 2, 2, 2, 6, 1, 4, 0, 7, 8, 3, 2, 9, 4, 4, 6, 1, 9, 4, 0, 9, 8, 1, 1, 6, 1, 3, 1, 7, 8, 4, 5, 3, 5, 6, 9, 6, 0, 8, 0, 2, 9, 2, 4, 8, 0, 9, 7, 6, 4, 2, 7, 6, 9, 9, 0, 2, 8, 4, 6, 5, 3, 0, 5, 9, 3, 1, 2, 2, 9, 9, 6, 7, 9, 9, 4, 1, 3, 7, 9, 2, 2, 9
Offset: 1

Author

Patrick C. Schneider, Aug 18 2018

Keywords

Examples

			1.393091545385710592226140783294461940981161317845356960802924...
		

Crossrefs

Cf. A008789 (n^(n+3)), A316295 (similar, with 2 instead of 3).

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^(x + 3) == x^x + x^3, {x, 3/2}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 18 2023 *)
  • PARI
    solve(x=1,2,x^(x+3)-x^x-x^3)

A319026 Decimal expansion of Psi(3).

Original entry on oeis.org

9, 2, 2, 7, 8, 4, 3, 3, 5, 0, 9, 8, 4, 6, 7, 1, 3, 9, 3, 9, 3, 4, 8, 7, 9, 0, 9, 9, 1, 7, 5, 9, 7, 5, 6, 8, 9, 5, 7, 8, 4, 0, 6, 6, 4, 0, 6, 0, 0, 7, 6, 4, 0, 1, 1, 9, 4, 2, 3, 2, 7, 6, 5, 1, 1, 5, 1, 3, 2, 2, 7, 3, 2, 2, 2, 3, 3, 5, 3, 2, 9, 0, 6, 3
Offset: 0

Author

Patrick C. Schneider, Sep 08 2018

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			0.92278433509846713939348790...
		

Crossrefs

Programs

  • Maple
    evalf(Psi(3.0)) ; - R. J. Mathar, Aug 29 2023
  • Mathematica
    RealDigits[3/2 - EulerGamma, 10, 100][[1]] (* Amiram Eldar, May 24 2023 *)
  • PARI
    psi(3)

Formula

Psi(3) = Psi(2) + 1/2 = 3/2 - gamma, with gamma = A001620 and Psi(2) = A153810. - Wolfdieter Lang, Oct 05 2018

A316295 Decimal expansion of x such that x^(x+2) = x^x + x^2.

Original entry on oeis.org

1, 4, 9, 1, 7, 7, 9, 7, 0, 9, 3, 3, 2, 8, 4, 9, 8, 4, 1, 2, 5, 2, 3, 2, 8, 3, 3, 8, 7, 4, 6, 5, 8, 9, 7, 7, 3, 5, 3, 5, 5, 9, 5, 3, 0, 2, 7, 2, 5, 6, 8, 8, 2, 0, 8, 2, 5, 8, 1, 5, 5, 4, 3, 7, 6, 7, 7, 9, 7, 7, 6, 4, 8, 2, 2, 8, 3, 9, 0, 0, 2, 0, 4, 4, 8, 9, 0, 4, 1, 6, 8, 8, 0, 3, 4, 5, 8, 4, 6, 9, 7, 6, 1, 6, 7
Offset: 1

Author

Patrick C. Schneider, Jun 29 2018

Keywords

Examples

			1.4917797093328498412523283387465897735355953027256882082581554376779776...
		

Crossrefs

Cf. A008788 (x^(x+2)).

Programs

  • Mathematica
    RealDigits[ NSolve[x^(x + 2) == x^x + x^2, x, Reals, WorkingPrecision -> 128][[1, 1, 2]], 10][[1]] (* Robert G. Wilson v, Jul 21 2018 *)
  • PARI
    solve(x=1, 2, x^(x+2)-x^x-x^2)

A316360 Numbers k such that (2^k-2)^2-3 is prime.

Original entry on oeis.org

4, 8, 12, 14, 18, 32, 62, 66, 96, 120, 122, 140, 180, 202, 228, 740, 800, 810, 1012, 1142, 1386, 1496, 1698, 4622, 5674, 54892, 75482
Offset: 1

Author

Patrick C. Schneider, Jun 30 2018

Keywords

Programs

  • Magma
    [n: n in [2..750] |IsPrime((2^n - 2)^2 - 3)]; // Vincenzo Librandi, Jul 01 2018
  • Maple
    select(k->isprime(4^k-2^(2+k)+1),[$ 1..3000]); # Muniru A Asiru, Jul 01 2018
  • Mathematica
    Select[Range[3000], PrimeQ[(2^# - 2)^2 - 3] &] (* Michael De Vlieger, Jun 30 2018 *)
  • PARI
    is(n)=ispseudoprime((2^n-2)^2-3)
    

Extensions

a(26) from Giovanni Resta, Jul 02 2018
a(27) from Michael S. Branicky, Nov 27 2024

A316229 Decimal expansion of x such that x^x - x^-x = x.

Original entry on oeis.org

1, 5, 8, 1, 9, 7, 9, 0, 2, 2, 5, 3, 5, 1, 7, 9, 4, 6, 5, 3, 7, 9, 1, 4, 5, 9, 9, 6, 0, 6, 7, 4, 3, 9, 0, 4, 2, 5, 3, 8, 4, 5, 9, 4, 0, 3, 2, 2, 0, 3, 8, 2, 4, 8, 7, 1, 7, 5, 3, 1, 0, 1, 7, 5, 0, 8, 5, 4, 6
Offset: 1

Author

Patrick C. Schneider, Jun 27 2018

Keywords

Examples

			1.5819790225351794653791459960674390425384...
		

Crossrefs

Cf. A000312 (x^x).

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^x - x^(-x) == x, {x, 1}, WorkingPrecision -> 100]][[1]] (* Vaclav Kotesovec, Jul 06 2018 *)
  • PARI
    solve(x=1, 2, x^x-x^-x-x)

A305836 Numbers k such that (2^k-1)^4 + 2 is prime.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 12, 30, 78, 244, 490, 760, 1808, 4790, 34330
Offset: 1

Author

Patrick C. Schneider, Jun 11 2018

Keywords

Comments

a(16) > 10^5. - Robert Price, Jul 21 2018

Crossrefs

Cf. A128832 ((2^n-1)^4).

Programs

  • Mathematica
    Select[Range@ 2000, PrimeQ[(2^# - 1)^4 + 2] &] (* Michael De Vlieger, Jun 11 2018 *)
  • PARI
    is(n)=ispseudoprime((2^n-1)^4+2)

Extensions

a(14) from Vaclav Kotesovec, Jun 16 2018
a(15) from Robert Price, Jun 20 2018