cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paul Larm

Paul Larm's wiki page.

Paul Larm has authored 3 sequences.

A223548 Smallest prime factors for sequence A223546.

Original entry on oeis.org

13, 229, 269, 331, 1036991, 193, 1187, 379, 942381313, 1078717, 1690920279179, 593, 181, 1433, 641, 139, 631, 2622013, 1123, 130337, 223, 155784593, 3746107, 1223, 13791824242727551, 67623587, 853, 299635177, 3966293, 197, 4755811387725362803, 263, 40637, 577
Offset: 1

Author

Paul Larm, Mar 21 2013

Keywords

Examples

			a(3) = 229, the smallest prime factor of A223546(3) = 233335657 = 229*307*3319.
		

Crossrefs

Formula

a(n) = A020639(A223546(n)).
a(n) = 463 for n >= 74. - Sean A. Irvine, Jul 20 2025

Extensions

a(15)-a(34) from Chai Wah Wu, Oct 10 2019

A223546 Composite numbers in the sequence A217723.

Original entry on oeis.org

247, 233335657, 6703028887, 7628001653827, 311878265181037, 628284422185342477, 33217442899375387207, 1955977793053588026277, 119244359152460559009547, 7977565910232727614888637, 565918396036931688582304027, 3258940366335958863738288181627
Offset: 1

Author

Paul Larm, Mar 21 2013

Keywords

Examples

			a(1) = 247 = 13*19 which is the first composite number in sequence A217723.
		

Crossrefs

Intersection of A002808 and A217723.

A217723 a(n) = (sum of first n primorial numbers) minus 1.

Original entry on oeis.org

1, 7, 37, 247, 2557, 32587, 543097, 10242787, 233335657, 6703028887, 207263519017, 7628001653827, 311878265181037, 13394639596851067, 628284422185342477, 33217442899375387207, 1955977793053588026277, 119244359152460559009547
Offset: 1

Author

Paul Larm, Mar 21 2013

Keywords

Examples

			For n = 4, a(4) = 2 + 2*3 + 2*3*5 + 2*3*5*7 - 1 = 247.
		

Crossrefs

Equals A060389 - 1. Cf. A223546, A223548.

Programs

  • Mathematica
    Accumulate[Denominator[Accumulate[1/Prime[Range[20]]]]] - 1 (* Alonso del Arte, Mar 21 2013 *)
    Accumulate[Table[Fold[Times,Prime[Range[n]]],{n,20}]]-1 (* Harvey P. Dale, May 23 2020 *)

Formula

a(1) = P(1)# - 1, a(2) = P(1)# + P(2)# -1; where P(n)# is the product of first n prime numbers (primorial#).