cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Rebecca Embar

Rebecca Embar's wiki page.

Rebecca Embar has authored 2 sequences.

A353194 Number of Condorcet voting profiles with three candidates and 2n-1 voters.

Original entry on oeis.org

0, 12, 540, 21000, 785820, 28956312, 1058809752, 38545567632, 1399354322652, 50707958458872, 1835099465988360, 66348521294296176, 2397139928161319640, 86559958069097395440, 3124302168622853150640, 112729791393354644416800
Offset: 1

Author

Rebecca Embar, Apr 29 2022

Keywords

Comments

All terms are multiples of 12.

Crossrefs

Programs

  • Maple
    #(From Maple package Condorcet3 by Doron Zeilberger)
    #NuCo(N):The first N terms of the sequence "number of Condorcet vote-profiles" with 2v-1 voters and three candidates. Using the third-order recurrence. Try:
    #NuCo(100);
    NuCo:=proc(N) local L,n,kha: L:=[0,12,540]: if N<=3 then RETURN(L[N]): fi: for n from 4 to N do kha:=4*(19*n^2-57*n+45)/(n-1)^2*L[-1]-36*(2*n-3)*(22*n^2-99*n+111)/(n-2)/(n-1)^2*L[-2]+1296*(n-3)*(2*n-3)*(2*n-5)/(n-2)/(n-1)^2*L[-3]: L:=[L[2],L[3],kha]: od: L[-1]: end: seq(NuCo(n), n=1..16);
  • Mathematica
    RecurrenceTable[{a[n] == (4*(19*n^2 - 57*n + 45)/(n-1)^2) * a[n-1] - (36*(2*n - 3)*(22*n^2 - 99*n + 111)/((n-2)*(n-1)^2)) * a[n-2] + (1296*(n-3)*(2*n - 3)*(2*n - 5)/((n-2)*(n-1)^2)) * a[n-3], a[1] == 0, a[2] == 12, a[3] == 540}, a[n], {n, 1, 20}] (* Vaclav Kotesovec, May 20 2022 *)
  • PARI
    a(n) = 2*sum(i1=0, n-2, sum(i2=0, n-2-i1, sum(i3=0, n-2-i1-i2, sum(i4=0, n-2-i1-i2-i3, sum(i5=0, n-2-i1-i2-i3-i4, ((2*n-1)!/((n-1-i2-i3-i5)!*i2!*i3!*(i2+i4+i5+1)!*(n-1-i1-i2-i4)!*i1!))))))) \\ Michel Marcus, May 03 2022

Formula

a(n) = (4*(19*n^2-57*n+45)/(n-1)^2)*a(n-1) - (36*(2*n-3)*(22*n^2-99*n+111)/((n-2)*(n-1)^2))*a(n-2) + (1296*(n-3)*(2*n-3)*(2*n-5)/((n-2)*(n-1)^2))*a(n-3).
a(n) = 2*(Sum_{i1=0..n-2} Sum_{i2=0..n-2-i1} Sum_{i3=0..n-2-i1-i2} Sum_{i4=0..n-2-i1-i2-i3} Sum_{i5=0..n-2-i1-i2-i3-i4} ((2*n-1)!/((n-1-i2-i3-i5)!*i2!*i3!*(i2+i4+i5+1)!*(n-1-i1-i2-i4)!*i1!))).
a(n) ~ (1/4 - 3*arcsin(1/3)/(2*Pi)) * 6^(2*n - 1) [Guilbaud, 1952].

A353230 Number of Condorcet voting profiles with three candidates and 2n-1 voters where all the choices are from {123, 231, 312}.

Original entry on oeis.org

0, 6, 90, 1050, 11130, 112266, 1099098, 10550826, 99899514, 936435786, 8711707290, 80572452714, 741766408890, 6803700252810, 62219207836890, 567597206875050, 5167463468534010, 46965976868507850, 426262280218695450, 3864157168469020650, 34994228358927126330
Offset: 1

Author

Rebecca Embar, May 01 2022

Keywords

Comments

All terms are multiples of 6.

Crossrefs

Cf. A353194.

Programs

  • Mathematica
    Table[FullSimplify[3^(2*n - 1) - 2^(n-1) * Binomial[2*n, n] * Hypergeometric2F1[1, n + 1/2, n + 1, 8/9]/3], {n, 1, 25}] (* Vaclav Kotesovec, May 20 2022 *)

Formula

a(n) = ((17*n-21)*a(n-1)-(72*n-108)*a(n-2))/(n-1), with a(1) = 0, a(2) = 6.