cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Redjan Shabani

Redjan Shabani's wiki page.

Redjan Shabani has authored 1 sequences.

A214411 The maximum exponent k of 7 such that 7^k divides n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Author

Redjan Shabani, Jul 16 2012

Keywords

Comments

7-adic valuation of n.

Examples

			n=147 = 3*7*7 is divisible by 7^2, so a(147)=2.
		

Crossrefs

Cf. A007814 (2-adic), A007949 (3-adic), A112765 (5-adic), A082784.

Programs

  • Maple
    seq(padic:-ordp(n,7), n=1..100); # Robert Israel, Mar 05 2020
  • Mathematica
    mek[n_]:=Module[{k=Ceiling[Log[7,n]]},While[!Divisible[n,7^k],k--];k]; Array[ mek,140] (* Harvey P. Dale, Mar 27 2017 *)
    IntegerExponent[Range[150],7] (* Suggested by Amiram Eldar *) (* Harvey P. Dale, Mar 07 2020 *)
  • PARI
    a(n)=valuation(n,7) \\ Charles R Greathouse IV, Jul 17 2012
    
  • PARI
    A=vector(1000);for(i=1,log(#A+.5)\log(7),forstep(j=7^i,#A,7^i,A[j]++));A \\ Charles R Greathouse IV, Jul 17 2012

Formula

G.f.: Sum_{k>=1} x^(7^k)/(1-x^(7^k)). See A112765. - Wolfdieter Lang, Jun 18 2014
If n == 0 (mod 7) then a(n) = 1 + a(n/7), otherwise a(n) = 0. - M. F. Hasler, Mar 05 2020
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/6. - Amiram Eldar, Jan 17 2022
a(n) = 7*Sum_{j=1..floor(log(n)/log(7))} frac(binomial(n, 7^j)*7^(j-1)/n). - Dario T. de Castro, Jul 12 2022