A347902 a(n) = a(n-1) + a(n-3) + a(n-4) with initial values a(0) = 8, a(1)=5, a(2) = 13, a(3) = 30.
8, 5, 13, 30, 43, 61, 104, 177, 281, 446, 727, 1185, 1912, 3085, 4997, 8094, 13091, 21173, 34264, 55449, 89713, 145150, 234863, 380025, 614888, 994901, 1609789, 2604702, 4214491, 6819181, 11033672, 17852865, 28886537, 46739390, 75625927, 122365329
Offset: 0
Examples
Here is one of the a(10)=727 tilings for n=10. _ _| |_ _______| |_|_|_____ |_|___|_|_|___|_|___|
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Programs
-
Mathematica
LinearRecurrence[{1, 0, 1, 1}, {8, 5, 13, 30}, 33]
Formula
G.f.: (8 - 3*x + 8*x^2 + 9*x^3)/((1-x-x^2)*(1+x^2)).
a(n) = (7*Lucas(n+3) + 6*i^(n*(n+1))*(3-(-1)^n))/5 where i = sqrt(-1).
E.g.f.: (12*cos(x) - 24*sin(x) + 14*exp(x/2)*(2*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)))/5. - Stefano Spezia, Sep 18 2021
From Greg Dresden, Mar 19 2024: (Start)
a(2*n) = (7*Lucas(2*n+3) + 12*(-1)^n)/5.
a(2*n+1) = (7*Lucas(2*n+4) - 24*(-1)^n)/5. (End)
Comments