cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Reeva Bohra

Reeva Bohra's wiki page.

Reeva Bohra has authored 1 sequences.

A347902 a(n) = a(n-1) + a(n-3) + a(n-4) with initial values a(0) = 8, a(1)=5, a(2) = 13, a(3) = 30.

Original entry on oeis.org

8, 5, 13, 30, 43, 61, 104, 177, 281, 446, 727, 1185, 1912, 3085, 4997, 8094, 13091, 21173, 34264, 55449, 89713, 145150, 234863, 380025, 614888, 994901, 1609789, 2604702, 4214491, 6819181, 11033672, 17852865, 28886537, 46739390, 75625927, 122365329
Offset: 0

Author

Reeva Bohra and Greg Dresden, Sep 18 2021

Keywords

Comments

For n >= 3, a(n) is also the number of ways to tile this "central staircase" figure of length n with squares and dominoes; this is the picture for length n=10:
_
||_
_____|_|||_____
|||_|||_|||_|_|

Examples

			Here is one of the a(10)=727 tilings for n=10.
             _
           _| |_
   _______| |_|_|_____
  |_|___|_|_|___|_|___|
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 1, 1}, {8, 5, 13, 30}, 33]

Formula

G.f.: (8 - 3*x + 8*x^2 + 9*x^3)/((1-x-x^2)*(1+x^2)).
a(n) = (7*Lucas(n+3) + 6*i^(n*(n+1))*(3-(-1)^n))/5 where i = sqrt(-1).
E.g.f.: (12*cos(x) - 24*sin(x) + 14*exp(x/2)*(2*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)))/5. - Stefano Spezia, Sep 18 2021
5*a(n) = 7*A000032(n+3) - 12 *(-1)^floor((n-1)/2)*A000034(n). - R. J. Mathar, Sep 30 2021
From Greg Dresden, Mar 19 2024: (Start)
a(2*n) = (7*Lucas(2*n+3) + 12*(-1)^n)/5.
a(2*n+1) = (7*Lucas(2*n+4) - 24*(-1)^n)/5. (End)