A386885 a(n) is the number of iterations that -n requires to reach 1 under the map x -> -x/2 if x is even, 3x + 1 if x is odd.
2, 1, 4, 4, 10, 13, 13, 3, 16, 6, 6, 6, 45, 9, 9, 6, 48, 12, 12, 12, 25, 51, 51, 15, 15, 15, 15, 15, 41, 54, 54, 5, 18, 18, 18, 18, 31, 44, 44, 8, 57, 8, 8, 8, 21, 21, 21, 8, 34, 47, 47, 47, 60, 60, 60, 11, 11, 11, 11, 11, 86, 24, 24, 8, 37, 50, 50, 50, 50, 63
Offset: 1
Keywords
Examples
n = 7 requires a(7) = 13 steps to reach -1: 7 -> 20 -> -10 -> 5 -> 14 -> -7 -> -22 -> 11 -> 32 -> -16 -> 8 -> -4 -> 2 -> -1.
Links
- Ryosuke Miyazawa, The Shadow Collatz Conjecture: The Journey of All Integers Toward -1, preprint, Zenodo, (2025).
Programs
-
Maple
a:= proc(n) option remember; `if`(n=-1, 0, 1+a(`if`(n::even, -n/2, 3*n-1))) end: seq(a(n), n=1..100); # Alois P. Heinz, Aug 13 2025
-
Mathematica
a[n_]:=Module[{s = 0, m = n},While[m!=-1,s++;m=If[BitAnd[m,1]==1,3*m -1,-m/2]];s];Array[a,70] (* James C. McMahon, Aug 18 2025 *)
-
PARI
a(n) = if(n==0, oo, my(s=0); while(n!=-1, s++; n=if(bitand(n,1), 3*n-1, -n/2)); s) \\ Andrew Howroyd, Aug 06 2025
Formula
a(1) = 2; for n > 1, a(n) = 1 + a(f(n)), where f(n) = -n/2 if n is even, 3n - 1 if n is odd.
Comments