A381463 Limiting sequence of the possible number of inversions in stable configurations of 4^n-1 chips in a chip firing-game directed 4-ary tree resulting from a permutation-based strategy of firing chips.
0, 1, 4, 5, 6, 16, 17, 20, 21, 22, 24, 25, 26, 27, 64, 65, 68, 69, 70, 80, 81, 84, 85, 86, 88, 89, 90, 91, 96, 97, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 256, 257, 260, 261, 262, 272, 273, 276, 277, 278, 280, 281, 282, 283, 320, 321, 324, 325, 326, 336, 337, 340
Offset: 1
Keywords
Links
- Wikipedia, Chip-firing game
- Ryota Inagaki, Tanya Khovanova, and Austin Luo, Permutation-based Strategies for Labeled Chip-Firing on k-ary Trees, arXiv:2503.09577 [math.CO], 2025.
Programs
-
Python
k = 4 s = set() for i in range(2): for j in range(3): for l in range(4): for m in range(5): for n in range(6): s.add(((k** 5 - k ** (5-n)) + (k** 4 - k ** (4-m)) + (k ** 3 - k ** (3-l)) + (k ** 2 - k ** (2-j))+ (k ** 1 - k ** (1-i)))// (k-1)) l = list(s) l.sort() print(l)
Comments