A299029 Triangle read by rows: Independent domination number for rectangular queens graph Q(n,m), 1 <= n <= m.
1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 1, 2, 2, 3, 3, 4, 1, 2, 3, 3, 4, 4, 4, 1, 2, 3, 4, 4, 4, 5, 5, 1, 2, 3, 4, 4, 4, 5, 5, 5, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 1, 2, 3, 4, 4, 5, 5, 6, 5, 5, 5, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8
Offset: 1
Examples
Table begins m\n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ---+----------------------------------------------------- 1 | 1 2 | 1 1 3 | 1 1 1 4 | 1 2 2 3 5 | 1 2 2 3 3 6 | 1 2 2 3 3 4 7 | 1 2 3 3 4 4 4 8 | 1 2 3 4 4 4 5 5 9 | 1 2 3 4 4 4 5 5 5 10 | 1 2 3 4 4 4 5 5 5 5 11 | 1 2 3 4 4 5 5 6 5 5 5 12 | 1 2 3 4 4 5 5 6 6 6 6 7 13 | 1 2 3 4 5 5 6 6 6 7 7 7 7 14 | 1 2 3 4 5 6 6 6 6 7 7 8 8 8 15 | 1 2 3 4 5 6 6 7 7 7 7 8 8 9 9 16 | 1 2 3 4 5 6 6 7 7 7 8 8 8 9 9 9 17 | 1 2 3 4 5 6 7 7 7 8 8 8 9 9 9 9 9 18 | 1 2 3 4 5 6 7 7 8 8 9 8 9 9 9 10 10 10
Links
- Sandor Bozoki, First 18 rows of the triangle, formatted as a simple linear sequence n, a(n) for n = 1..171
- S. Bozóki, P. Gál, I. Marosi, W. D. Weakley, Domination of the rectangular queens graph, arXiv:1606.02060 [math.CO], 2016.
- S. Bozóki, P. Gál, I. Marosi, W. D. Weakley, Domination of the rectangular queens graph, 2016.
- Eric Weisstein's World of Mathematics, Queen Graph
- Eric Weisstein's World of Mathematics, Queens Problem
Comments