cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sarah Nathanson

Sarah Nathanson's wiki page.

Sarah Nathanson has authored 2 sequences.

A247964 Beatty sequence for e^(1/3): a(n) = floor(n*(e^(1/3))).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 47, 48, 50, 51, 53, 54, 55, 57, 58, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93
Offset: 0

Author

Sarah Nathanson, Oct 01 2014

Keywords

Comments

The Beatty complement is given in A248522. - M. F. Hasler, Oct 07 2014

Programs

  • Java
    static int a(int n) {return (int) (n*Math.pow(Math.E, (1.0/3))); }
    
  • Mathematica
    Floor[Range[0,100]*Exp[1/3]] (* Paolo Xausa, Jul 16 2024 *)
  • PARI
    a(n)=n\exp(-1/3) \\ M. F. Hasler, Oct 07 2014

A240977 Beatty sequence for cube root of Pi: a(n) = floor(n*Pi^(1/3)).

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 84
Offset: 0

Author

Sarah Nathanson, Sep 30 2014

Keywords

Comments

Beatty complement of A248524. - M. F. Hasler, Oct 07 2014

Crossrefs

Cf. A092039 (Pi^(1/3)), A022844 (similar for Pi), A037086 (similar for sqrt(Pi)), A248524.

Programs

  • Java
    static int a(int n) {return (int) (n*Math.pow(Math.PI,(1.0/3)));}
    
  • Mathematica
    Table[Floor[n*(Pi^(1/3))], {n, 0, 50}] (* G. C. Greubel, Feb 14 2017 *)
  • PARI
    a(n)=n\Pi^(-1/3) \\ M. F. Hasler, Oct 07 2014

Formula

a(n) = floor(n*(Pi^1/3)).

Extensions

a(0)=0 prepended by Eric M. Schmidt, Oct 06 2014
Name edited by M. F. Hasler, Oct 07 2014