Thomas L. York has authored 4 sequences.
A001389
To get the 6th term, for example, note that 5th term has three (10 in ternary!) 1's, one (1) 0, etc., giving 10 1 1 0 1 2 2 1 1 2.
Original entry on oeis.org
2, 12, 1112, 10112, 11102112, 10110122112, 1110211011222112, 10110122110211022112, 1110211011222110122110222112, 10110122110211022110112221101022112, 11102110112221101221102221102110221101110222112
Offset: 1
-
a[1]=2; a[n_] := a[n] = FromDigits@ Flatten@ Table[ {IntegerDigits[ Length[e], 3], e[[1]]}, {e, Split[ IntegerDigits[ a[n - 1]]]}]; Array[a, 11] (* Giovanni Resta, Mar 25 2017 *)
A001391
To get the 3rd term, for example, note that 2nd term has three (11 in binary!) 1's and one (1) 0, giving 11 1 1 0.
Original entry on oeis.org
10, 1110, 11110, 100110, 1110010110, 111100111010110, 100110011110111010110, 1110010110010011011110111010110, 1111001110101100111001011010011011110111010110
Offset: 1
A001387
The binary "look and say" sequence.
Original entry on oeis.org
1, 11, 101, 111011, 11110101, 100110111011, 111001011011110101, 111100111010110100110111011, 100110011110111010110111001011011110101, 1110010110010011011110111010110111100111010110100110111011
Offset: 1
To get the 5th term, for example, note that 4th term has three (11 in binary!) 1's, one (1) 0 and two (10) 1's, giving 11 1 1 0 10 1.
- John Cerkan, Table of n, a(n) for n = 1..17
- J. H. Conway, The weird and wonderful chemistry of audioactive decay, Eureka 46 (1986) 5-16, reprinted in: Open Problems in Communications and Computations, Springer, 1987, 173-188.
- Nathaniel Johnston, The Binary "Look-and-Say" Sequence
- Thomas Morrill, Look, Knave, arXiv:2004.06414 [math.CO], 2020.
- Torsten Sillke, The binary form of Conway's sequence
-
a[1] := 1; a[n_] := a[n] = FromDigits[Flatten[{IntegerDigits[Length[#],2], First[#]}& /@ Split[IntegerDigits[a[n-1]]]]]; Map[a, Range[20]] (* Peter J. C. Moses, Mar 24 2013 *)
Nest[Append[#, FromDigits@ Flatten@ Map[Reverse /@ IntegerDigits[Tally@ #, 2] &, Split@ IntegerDigits@ Last@ #]] &, {1}, 9] (* Michael De Vlieger, Dec 12 2017 *)
-
from itertools import accumulate, groupby, repeat
def summarize(n, _): return int("".join(bin(len(list(g)))[2:]+k for k, g in groupby(str(n))))
def aupto(terms): return list(accumulate(repeat(1, terms), summarize))
print(aupto(11)) # Michael S. Branicky, Sep 18 2022
A001388
Describe the previous term (in base 3)!.
Original entry on oeis.org
1, 11, 21, 1211, 111221, 1012211, 1110112221, 101102110211, 111021101221101221, 1011012211011222110112211, 1110211011222110211022110212221, 10110122110211022110122110222110121110211
Offset: 1
To get the 6th term, for example, note that the 5th term has three (10 in ternary!) 1's, two (2) 2's and one (1) 1, giving 10 1 2 2 1 1.
-
a[1] := 1; a[n_] := a[n] = FromDigits[Flatten[{IntegerDigits[Length[#],3], First[#]}& /@ Split[IntegerDigits[a[n-1]]]]]; Map[a,Range[25]] (* Peter J. C. Moses, Mar 24 2013 *)
Comments