cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vikram Pandya

Vikram Pandya's wiki page.

Vikram Pandya has authored 2 sequences.

A187762 a(n) = smallest final prime in a chain of 2n+1 consecutive primes such that sum of the last 1, 3, 5, ..., 2n+1 terms in the sequence is also a prime.

Original entry on oeis.org

2, 11, 17, 47, 71, 157, 157, 167, 203569, 203569, 2803083484951
Offset: 0

Author

Vikram Pandya, Jan 04 2013

Keywords

Comments

Conjecture: a(n) exists for all n. (This may follow from the Green-Tao theorem, Dirichlet's theorem and Dickson's conjecture.)

Examples

			Consider the chain of following consecutive prime numbers 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157
Take the sum of an odd number of primes out of this sequence starting at the end:
S(1) = 157
S(3) = 157 + 151 + 149 = 457
S(5) = 157 + 151 + 149 + 139 + 137 = 733
S(7) = 157 + 151 + 149 + 139 + 137 + 131 +127 = 991
S(9) = 157 + 151 + 149 + 139 + 137 + 131 +127 + 113 + 109 = 1213
S(11) = 157 + 151 + 149 + 139 + 137 + 131 +127 + 113 + 109 + 107 + 103 = 1423
All of these are prime numbers.
Currently a(10) is the last known term, a chain of 21 primes found after searching up to 4*10^13. The 21 consecutive primes are 2803083484321, 2803083484343, 2803083484349, 2803083484363, 2803083484391, 2803083484429, 2803083484499, 2803083484507, 2803083484633, 2803083484637, 2803083484639, 2803083484673, 2803083484697, 2803083484703, 2803083484763, 2803083484777, 2803083484781, 2803083484819, 2803083484921, 2803083484937, 2803083484951, where the sums S(21), S(19), S(17), S(15) . . . . to S(1): 58864753177133, 53258586208469, 47652419239757, 42046252270937, 36440085301931, 30833918332661, 25227751363349, 19621584393949, 14015417424409, 8409250454809, 2803083484951 respectively are also primes.
		

Crossrefs

Cf. A182121.

Programs

  • Mathematica
    (* This program is not convenient for n > 9 *) run[m_, n_] := Prime /@ Range[m + 2n, m, -1]; ok[ru_List] := (test = True; For[k = 1, k <= Length[ru], k = k+2, s = Total[ru[[1 ;; k]]]; If[! PrimeQ[s], test = False; Break[]]]; test); a[n_] := a[n] = Catch[For[m = 1, m <= 10^5, m++, r = run[m, n]; If[ok[r ], Throw[r[[1]]]]]]; Table[Print[a[n]]; a[n], {n, 0, 9}] (* Jean-François Alcover, Jan 08 2013 *)

A153874 Numbers n = abc...k such that a^2*b^2*c^2*...k^2 - 1 = n.

Original entry on oeis.org

143, 323, 11663
Offset: 1

Author

Vikram Pandya, Jan 03 2009

Examples

			1) 143 = 1^2 * 4^2 * 3^2 - 1 = 1 * 16* 9 - 1. 2) 323 = 3^2 * 2^2 * 3^2 - 1 = 9 * 4 * 9 - 1. 3) 1663 = 1^2 * 1^2* 6^2 * 6^2 * 3^2 - 1 = 1 * 1 * 36 * 36 * 9 - 1.
		

Programs

  • Mathematica
    Select[Range[12000],#==Times@@(IntegerDigits[#]^2)-1&] (* Harvey P. Dale, Feb 06 2022 *)
  • PARI
    n=1;while(n!=10^16,n+=1;j=n^2-1;k=1;while(j!=0,k=k*(j%10)^2;j=floor(j/10));if(k-1==n^2-1,print(n^2-1)))

Extensions

Edited by N. J. A. Sloane, Jan 03 2009