A345448 Number of tilings of a 2 X n rectangle with dominoes and long L-shaped 4-minoes.
1, 1, 2, 7, 15, 32, 79, 185, 422, 987, 2307, 5352, 12451, 29005, 67478, 156991, 365391, 850304, 1978615, 4604465, 10715078, 24934611, 58024779, 135028632, 314222011, 731218981, 1701605078, 3959769367, 9214694391, 21443322032, 49900304047, 116121942377
Offset: 0
Examples
For n = 3 the a(3)=7 tilings are: ._____. ._____. ._____. ._____. | |___| |___| | | ___| |___ | |_____| |_____| |_|___| |___|_| ._____. ._____. ._____. |___| | | |___| | | | | |___|_| |_|___| |_|_|_|
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,4,2).
Crossrefs
Cf. A052980.
Programs
-
Mathematica
LinearRecurrence[{1, 1, 4, 2}, {1, 1, 2, 7}, 40]
Formula
a(n) = a(n-1) + a(n-2) + 4*a(n-3) + 2*a(n-4).
Sum_{j=0..n} a(n) = (1/7)(a(n+4) - a(n+2) - 5*a(n+1) - 1).
G.f.: 1/(1 - x - x^2 - 4*x^3 - 2*x^4). - Stefano Spezia, Jun 19 2021
a(n) = F(n+1) + 2*Sum_{j=3..n} a(n-j)*F(j) for F(i) = A000045(i) the i-th Fibonacci number. - Greg Dresden, Nov 10 2024