cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Yiwen Zhang

Yiwen Zhang's wiki page.

Yiwen Zhang has authored 1 sequences.

A345448 Number of tilings of a 2 X n rectangle with dominoes and long L-shaped 4-minoes.

Original entry on oeis.org

1, 1, 2, 7, 15, 32, 79, 185, 422, 987, 2307, 5352, 12451, 29005, 67478, 156991, 365391, 850304, 1978615, 4604465, 10715078, 24934611, 58024779, 135028632, 314222011, 731218981, 1701605078, 3959769367, 9214694391, 21443322032, 49900304047, 116121942377
Offset: 0

Author

Greg Dresden and Yiwen Zhang, Jun 19 2021

Keywords

Examples

			For n = 3 the a(3)=7 tilings are:
._____.  ._____.  ._____.  ._____.
| |___|  |___| |  |  ___|  |___  |
|_____|  |_____|  |_|___|  |___|_|
._____.  ._____.  ._____.
|___| |  | |___|  | | | |
|___|_|  |_|___|  |_|_|_|
		

Crossrefs

Cf. A052980.

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 4, 2}, {1, 1, 2, 7}, 40]

Formula

a(n) = a(n-1) + a(n-2) + 4*a(n-3) + 2*a(n-4).
Sum_{j=0..n} a(n) = (1/7)(a(n+4) - a(n+2) - 5*a(n+1) - 1).
G.f.: 1/(1 - x - x^2 - 4*x^3 - 2*x^4). - Stefano Spezia, Jun 19 2021
a(n) = F(n+1) + 2*Sum_{j=3..n} a(n-j)*F(j) for F(i) = A000045(i) the i-th Fibonacci number. - Greg Dresden, Nov 10 2024