cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000015 Smallest prime power >= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, 13, 13, 16, 16, 16, 17, 19, 19, 23, 23, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 32, 37, 37, 37, 37, 37, 41, 41, 41, 41, 43, 43, 47, 47, 47, 47, 49, 49, 53, 53, 53, 53, 59, 59, 59, 59, 59, 59, 61, 61, 64, 64, 64, 67, 67, 67, 71, 71, 71, 71, 73
Offset: 1

Views

Author

Keywords

Comments

The length of the m-th run of {a(n)} is the length of the (m-1)-st run of A031218 for m > 1. - Colin Linzer, Mar 08 2024

Crossrefs

Programs

  • Haskell
    a000015 n = a000015_list !! (n-1)
    a000015_list = 1 : concat
       (zipWith(\pp qq -> replicate (fromInteger (pp - qq)) pp)
               (tail a000961_list) a000961_list)
    -- Reinhard Zumkeller, Nov 17 2011, Apr 25 2011
    
  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime,{$1..N}):
    PPs:= {1} union Primes:
    for k from 1 to ilog2(N) do
       PPs:= PPs union map(`^`, select(`<=`,Primes, floor(N^(1/k))),k)
    od:
    PPs:= sort(convert(PPs,list)):
    1, seq(PPs[i]$(PPs[i]-PPs[i-1]), i=2..nops(PPs)); # Robert Israel, Jul 23 2015
  • Mathematica
    Insert[Table[m:=n;While[Not[Length[FactorInteger[m]]==1],m++ ];m,{n,2,100}], 1, 1] (* Stefan Steinerberger, Apr 17 2006 *)
    a[n_] := NestWhile[# + 1 &, n, Not@*PrimePowerQ]; (* Matthew House, Jul 14 2015, v6.0+ *)
    a[ n_] := If[ n < 2, Boole[n == 1], Module[{m = n}, While[ ! PrimePowerQ[ m], m++]; m]]; (* Michael Somos, Mar 06 2018 *)
    a[ n_] := If[ n < 1, 0, Module[{m = n}, While[ Length[ FactorInteger @ m ] != 1, m++]; m]]; (* Michael Somos, Mar 06 2018 *)
  • PARI
    {a(n) = if( n<1, 0, while(matsize(factor(n))[1]>1, n++); n)}; /* Michael Somos, Jul 16 2002 */
    
  • PARI
    a(n)=if(n>1,while(!isprimepower(n),n++));n \\ Charles R Greathouse IV, Feb 01 2013
    
  • Python
    from itertools import count
    from sympy import factorint
    def A000015(n): return next(filter(lambda m:len(factorint(m))<=1, count(n))) # Chai Wah Wu, Oct 25 2024
  • Sage
    [next_prime_power(n) for n in range(72)]  # Zerinvary Lajos, Jun 13 2009
    

Formula

a(A110654(n+1)) = A188666(n). - Reinhard Zumkeller, Apr 25 2011, corrected by M. F. Hasler, Jul 25 2015
a(n) = A188666(2n-1). - M. F. Hasler, Jul 25 2015

Extensions

More terms from Michael Somos, Jul 16 2002