cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000025 Coefficients of the 3rd-order mock theta function f(q).

Original entry on oeis.org

1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of partitions of n with even rank minus number with odd rank. The rank of a partition is its largest part minus the number of parts.

Examples

			G.f. = 1 + q - 2*q^2 + 3*q^3 - 3*q^4 + 3*q^5 - 5*q^6 + 7*q^7 - 6*q^8 + 6*q^9 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 82, Examples 4 and 5.
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other '3rd-order' mock theta functions are at A013953, A053250, A053251, A053252, A053253, A053254, A053255. See also A000039, A000199.

Programs

  • Maple
    a:= m-> coeff(series((1+4*add((-1)^n*q^(n*(3*n+1)/2)/
            (1+q^n), n=1..m))/mul(1-q^i, i=1..m), q, m+1), q, m):
    seq(a(n), n=0..120);
  • Mathematica
    CoefficientList[Series[(1+4Sum[(-1)^n q^(n(3n+1)/2)/(1+q^n), {n, 1, 10}])/Sum[(-1)^n q^(n(3n+1)/2), {n, -8, 8}], {q, 0, 100}], q] (* N. J. A. Sloane *)
    sgn[P_ (* a partition *)] :=
    Signature[
      PermutationList[
       Cycles[Flatten[
         SplitBy[Range[Total[P]], (Function[{x}, x > #1] &) /@
           Accumulate[P]], Length[P] - 1]]]]
    conjugate[P_List(* a partition *)] :=
    Module[{s = Select[P, #1 > 0 &], i, row, r}, row = Length[s];
      Table[r = row; While[s[[row]] <= i, row--]; r, {i, First[s]}]]
    Total[Function[{x}, sgn[x] sgn[conjugate[x]]] /@
        IntegerPartitions[#]] & /@ Range[20]
    (* George Beck, Oct 25 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / Product[ 1 + x^j, {j, k}]^2, {k, 0, Sqrt@n}], {x, 0, n}]]; (* Michael Somos, Jun 30 2015 *)
    rnk[prts_]:=Max[prts]-Length[prts]; mtf[n_]:=Module[{pn=IntegerPartitions[n]},Total[If[ EvenQ[ rnk[#]],1,-1]&/@pn]]; Join[{1},Array[mtf,60]] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(i=1, k, 1 + x^i, 1 + x * O(x^(n - k^2)))^2, 1), n))}; /* Michael Somos, Sep 02 2007 */
    
  • PARI
    my(N=60, x='x+O('x^N)); Vec(1+1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)^2/(1+x^k))) \\ Seiichi Manyama, May 23 2023

Formula

G.f.: 1 + Sum_{n>=1} (q^(n^2) / Product_{i=1..n} (1 + q^i)^2).
G.f.: (1 + 4 * Sum_{n>=1} (-1)^n * q^(n*(3*n+1)/2) / (1 + q^n)) / Product_{i>=1} (1 - q^i).
a(n) ~ -(-1)^n * exp(Pi*sqrt(n/6)) / (2*sqrt(n)) [Ramanujan]. - Vaclav Kotesovec, Jun 10 2019
G.f.: 1 - Sum_{n >= 1} (-1)^n*x^n/Product_{k = 1..n} 1 + x^k. See Fine, equation 26.22, p. 55. - Peter Bala, Feb 04 2021
From Seiichi Manyama, May 23 2023: (Start)
a(n) = A340601(n) - A340692(n).
G.f.: 1 + (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k)^2 / (1+x^k). (End)

Extensions

Entry improved by comments from Dean Hickerson