cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000690 Landau's approximation to population of x^2 + y^2 <= 2^n.

Original entry on oeis.org

1, 2, 3, 4, 7, 13, 24, 44, 83, 157, 297, 567, 1085, 2086, 4019, 7766, 15039, 29181, 56717, 110408, 215225, 420076, 820836, 1605587, 3143562, 6160098, 12080946, 23710229, 46565965, 91512121, 179947985, 354043613, 696935548, 1372589372
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = round(b*2^n/sqrt(log(2^n))) where b=0.764223654... is the Landau-Ramanujan constant (A064533).

Extensions

More terms from Sean A. Irvine, Feb 23 2011
Name clarified by Seth A. Troisi, Apr 28 2022

A000691 Ramanujan's approximation to population of x^2 + y^2 <= 2^n.

Original entry on oeis.org

1, 2, 3, 5, 9, 16, 29, 52, 94, 175, 327, 616, 1169, 2231, 4273, 8215, 15842, 30628, 59345, 115208, 224040, 436343, 850981, 1661663, 3248231, 6356076, 12448925, 24402959, 47873156, 93984236, 184632691, 362938014, 713852252, 1404817026
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

K = A064533.
Other population sequences for x^2 + y^2: A000050, A000690, A000692.

Programs

  • Maple
    Digits:=500;
    K:=.764223653589220662990698731250092328116790541393409514721686673
    7496146416587328588384015050131312337219372691207925926341874206467
    8084323063315434629380531605171169636177508819961243824994277683469
    0516235139218719620569053295644670419176349770659569905712938660289
    3858998296105166296089099177929836072973697200640316985128636517347
    3921065768550978681981674707359066921; a:=n->round(evalf(K*int(1/sqrt(ln(t)),t=1..2^n))); # Salvador Perez (pies314(AT)hotmail.com), May 08 2005

Extensions

More terms from Salvador Perez (pies314(AT)hotmail.com), May 08 2005
Corrected by Sean A. Irvine, Feb 24 2011
Name clarified by Seth A. Troisi, May 23 2022

A000074 Number of odd integers <= 2^n of form x^2 + y^2.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 25, 43, 83, 157, 296, 564, 1083, 2077, 4006, 7733, 14968, 29044, 56447, 109864, 214197, 418080, 816907, 1598040, 3129063, 6132106, 12027122, 23606527, 46366165, 91127332, 179207074, 352615528, 694182554, 1367278759
Offset: 1

Views

Author

Keywords

Comments

First differences of A000050. - Jean-François Alcover, Mar 19 2014

Examples

			a(4)=4 since 2^4=16 and 1=1^2, 5=1^2+2^2, 9=3^2, 13=2^2+3^2.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000050.

Programs

  • PARI
    a(n)=if(n<0,0,sum(k=1,2^(n-1),0
    				

Extensions

9 more terms from Sean A. Irvine, Sep 14 2009

A000692 An approximation to population of x^2 + y^2 <= 2^n.

Original entry on oeis.org

1, 3, 4, 5, 9, 15, 27, 50, 92, 171, 322, 610, 1161, 2220, 4260, 8201, 15828, 30622, 59362, 115287, 224260, 436871, 852161, 1664196, 3253531, 6366973, 12471056, 24447507, 47962236, 94161474, 184983976, 363632192, 715220838, 1407510311
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064533.
Other population sequences for x^2 + y^2: A000050, A000690, A000691.

Formula

a(n) = (b*2^n / sqrt(n*log(2))) * (1 + c/(n*log(2))) where b=0.764223654... is the Landau-Ramanujan constant (A064533) and c=0.5819486593... is the second-order Landau-Ramanujan constant (A227158) given by c = (1/2) * (1-log(Pi*e^gamma/(2*L))) - (1/4) * D(1) where D(s) = (d/ds)(log(Product_{p prime == 3 (mod 4)} 1/(1-p^(-2*s)))) and L is the Lemniscate constant (A064853) [see (12) in Shanks]. - Sean A. Irvine, Feb 25 2011

Extensions

More terms from Sean A. Irvine, Feb 24 2011
Name clarified by Seth A. Troisi, May 23 2022

A164775 a(n) is the number of positive integers <= 10^n that can be expressed as a sum of two squares.

Original entry on oeis.org

7, 43, 330, 2749, 24028, 216341, 1985459, 18457847, 173229058, 1637624156, 15570512744, 148736628858, 1426306930865, 13722217893214, 132387263219058, 1280309691127436
Offset: 1

Views

Author

Eric W. Weisstein, Aug 26 2009

Keywords

Examples

			a(1)=7 since 1 = 0^2 + 1^2, 2 = 1^2 + 1^2, 4 = 0^2 + 2^2, 5 = 1^2 + 2^2, 8 = 2^2 + 2^2, 9 = 0^2 + 3^2, 10 = 1^2 + 3^3.
		

Crossrefs

Formula

a(n) = A180416(n) + ceiling(sqrt(10^n)). - Hiroaki Yamanouchi, Jul 14 2014

Extensions

Offset changed from 0 to 1 by Robert G. Wilson v, Aug 29 2009
a(9) from Eric W. Weisstein, Aug 29 2009
a(10) from Donovan Johnson, Sep 16 2009
a(11)-a(12) from Ant King, May 02 2010
a(11)-a(12) corrected and a(13)-a(16) added by Hiroaki Yamanouchi, Jul 14 2014

A000205 Number of positive integers <= 2^n of form x^2 + 3 y^2.

Original entry on oeis.org

1, 1, 3, 4, 8, 14, 25, 45, 82, 151, 282, 531, 1003, 1907, 3645, 6993, 13456, 25978, 50248, 97446, 189291, 368338, 717804, 1400699, 2736534, 5352182, 10478044, 20531668, 40264582, 79022464, 155196838, 304997408, 599752463, 1180027022, 2322950591, 4575114295
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* This program is not suitable to compute more than a score of terms. *)
    a[0] = a[1] = 1; a[n_] := a[n] = Module[{cnt, k, r, x, y}, For[cnt = a[n-1]; k = 2^(n-1)+1, k <= 2^n, k++, r = Reduce[x >= 0 && y >= 0 && k == x^2 + 3 y^2, {x, y}, Integers]; If[r =!= False, cnt++]]; cnt];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 23 2019 *)
Showing 1-6 of 6 results.