cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000082 a(n) = n^2*Product_{p|n} (1 + 1/p).

Original entry on oeis.org

1, 6, 12, 24, 30, 72, 56, 96, 108, 180, 132, 288, 182, 336, 360, 384, 306, 648, 380, 720, 672, 792, 552, 1152, 750, 1092, 972, 1344, 870, 2160, 992, 1536, 1584, 1836, 1680, 2592, 1406, 2280, 2184, 2880, 1722, 4032, 1892, 3168, 3240, 3312, 2256
Offset: 1

Views

Author

Keywords

Comments

For n > 1: A006530(a(n)) = A076566(n-1). - Reinhard Zumkeller, Oct 03 2012
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 01 2017

References

  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.

Crossrefs

Programs

  • Haskell
    a000082 n = product $ zipWith (\p e -> p ^ (2*e - 1) * (p + 1))
                                  (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Oct 03 2012
  • Maple
    proc(n) local b,d: b := n^2: for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1+d^(-1)): fi: od: RETURN(b): end:
  • Mathematica
    Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1+1/#2), #1 ]&, n^2, Range[ n ] ], {n, 1, 45} ]
    Table[ n^2 Times@@(1+1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]), {n, 1, 45} ] (* Olivier Gérard, Aug 15 1997 *)
    f[p_, e_] := (p+1)*p^(2*e - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 23 2020 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,(1+p*X)/(1-p^2*X))[n])
    

Formula

a(n) = n * A001615(n).
Dirichlet g.f.: zeta(s-1)*zeta(s-2)/zeta(2*s-2).
Dirichlet convolution: Sum_{d|n} mu(n/d)*sigma(d^2). - Vladeta Jovovic, Nov 16 2001
Multiplicative with a(p^e) = p^(2*e-1)*(p+1). - David W. Wilson, Aug 01 2001
a(n) = A181797(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A001615(n^2). - Enrique Pérez Herrero, Mar 06 2012
Sum_{k=1..n} a(k) ~ 5*n^3 / Pi^2. - Vaclav Kotesovec, Jan 11 2019
Sum_{n>=1} 1/a(n) = A335762. - Amiram Eldar, Jun 23 2020

Extensions

Additional comments from Michael Somos, May 19 2000