cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A140697 Mobius transform of A000082.

Original entry on oeis.org

1, 5, 11, 18, 29, 55, 55, 72, 96, 145, 131, 198, 181, 275, 319, 288, 305, 480, 379, 522, 605, 655, 551, 792, 720, 905, 864, 990, 869, 1595, 991, 1152, 1441, 1525, 1595, 1728, 1405, 1895, 1991, 2088, 1721, 3025, 1891, 2358, 2784, 2755, 2255, 3168, 2688, 3600
Offset: 1

Views

Author

Gary W. Adamson, May 23 2008

Keywords

Comments

Dirichlet convolution of the sequence of (absolute values of A055615) and A007434. - R. J. Mathar, Feb 27 2011

Examples

			a(4) = 18 = (0, -1, 0, 1) dot (1, 6, 12, 24), where (0, -1 0, 1) = row 4 of A054525 and A000082 = (1, 6, 12, 24, 30, 72,...).
		

Crossrefs

Programs

  • Maple
    with (numtheory): a:= n-> add (k^2* mul(1+1/p, p=factorset(k)) *mobius (n/k), k=divisors(n)): seq (a(n), n=1..60); # Alois P. Heinz, Aug 28 2008
  • Mathematica
    a[n_] := Sum[ k^2*Product[ 1+1/p, {p, FactorInteger[k][[All, 1]]}]* MoebiusMu[n/k], {k, Divisors[n]}] - MoebiusMu[n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 03 2012, after Alois P. Heinz *)
    f[p_, e_] := (p - 1)*(p + 1)^2*p^(2*e - 3); f[p_, 1] := p*(p + 1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 28 2023 *)

Formula

Dirichlet g.f.: zeta(s-1)*zeta(s-2)/(zeta(2s-2)*zeta(s)). - R. J. Mathar, Feb 27 2011
Sum_{k=1..n} a(k) ~ 5*n^3 / (Pi^2 * zeta(3)). - Vaclav Kotesovec, Jan 11 2019
Multiplicative with a(p) = p*(p+1) - 1, and a(p^e) = (p-1)*(p+1)^2*p^(2*e-3) for e >= 2. - Amiram Eldar, Oct 28 2023

Extensions

Definition corrected by N. J. A. Sloane, Jul 28 2008
More terms from Alois P. Heinz, Aug 28 2008

A377154 Expansion of e.g.f. exp(Sum_{k>=1} A000082(k)*x^k/k).

Original entry on oeis.org

1, 1, 7, 43, 385, 3721, 47911, 612067, 9559873, 157478545, 2910837511, 56866891291, 1224263236417, 27618866777113, 673173639519655, 17237263465417171, 469017851840595841, 13367670808113197857, 401964392506370969863, 12604372518766870306315, 414278024498330114803201
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[k * Product[1 + 1/p, {p, Select[Divisors[k], PrimeQ]}] * x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ n! * 5^(1/6) * exp(-1/12 - 1/(20*Pi^2) - 3^(2/3)*n^(1/3) / (10^(1/3)*Pi^(4/3)) + 3^(4/3)*5^(1/3)*n^(2/3) / (2*Pi)^(2/3)) / (6^(1/3) * Pi^(5/6) * n^(2/3)).
a(n) ~ 10^(1/6) * exp(-1/12 - 1/(20*Pi^2) - 3^(2/3)*n^(1/3) / (10^(1/3)*Pi^(4/3)) + 3^(4/3)*5^(1/3)*n^(2/3) / (2*Pi)^(2/3)) * n^(n - 1/6) / (3^(1/3) * Pi^(1/3) * exp(n)).
E.g.f.: exp(Sum_{k>=1} A001615(k)*x^k).

A001615 Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20, 36, 32, 36, 24, 48, 30, 42, 36, 48, 30, 72, 32, 48, 48, 54, 48, 72, 38, 60, 56, 72, 42, 96, 44, 72, 72, 72, 48, 96, 56, 90, 72, 84, 54, 108, 72, 96, 80, 90, 60, 144, 62, 96, 96, 96, 84, 144, 68, 108, 96
Offset: 1

Views

Author

Keywords

Comments

Number of primitive sublattices of index n in generic 2-dimensional lattice; also index of Gamma_0(n) in SL_2(Z).
A generic 2-dimensional lattice L = consists of all vectors of the form mV + nW, (m,n integers). A sublattice S = has index |ad-bc| and is primitive if gcd(a,b,c,d) = 1. The generic lattice L has precisely a(2) = 3 sublattices of index 2, namely <2V,W>, and (which = ) and so on for other indices.
The sublattices of index n are in 1-to-1 correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} = sigma(n), which is A000203. A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * product_{p|n} (1+1/p), which is the present sequence.
SL_2(Z) = Gamma is the group of all 2 X 2 matrices [a b; c d] where a,b,c,d are integers with ad-bc = 1 and Gamma_0(N) is usually defined as the subgroup of this for which N|c. But conceptually Gamma is best thought of as the group of (positive) automorphisms of a lattice , its typical element taking V -> aV + bW, W -> cV + dW and then Gamma_0(N) can be defined as the subgroup consisting of the automorphisms that fix the sublattice of index N. - J. H. Conway, May 05 2001
Dedekind proved that if n = k_i*j_i for i in I represents all the ways to write n as a product, and e_i=gcd(k_i,j_i), then a(n)= sum(k_i / (e_i * phi(e_i)), i in I ) [cf. Dickson, History of the Theory of Numbers, Vol. 1, p. 123].
Also a(n)= number of cyclic subgroups of order n in an Abelian group of order n^2 and type (1,1) (Fricke). - Len Smiley, Dec 04 2001
The polynomial degree of the classical modular equation of degree n relating j(z) and j(nz) is psi(n) (Fricke). - Michael Somos, Nov 10 2006; clarified by Katherine E. Stange, Mar 11 2022
The Mobius transform of this sequence is A063659. - Gary W. Adamson, May 23 2008
The inverse Mobius transform of this sequence is A060648. - Vladeta Jovovic, Apr 05 2009
The Dirichlet inverse of this sequence is A008836(n) * A048250(n). - Álvar Ibeas, Mar 18 2015
The Riemann Hypothesis is true if and only if a(n)/n - e^gamma*log(log(n)) < 0 for any n > 30. - Enrique Pérez Herrero, Jul 12 2011
The Riemann Hypothesis is also equivalent to another inequality, see the Sole and Planat link. - Thomas Ordowski, May 28 2017
An infinitary analog of this sequence is the sum of the infinitary divisors of n (see A049417). - Vladimir Shevelev, Apr 01 2014
Problem: are there composite numbers n such that n+1 divides psi(n)? - Thomas Ordowski, May 21 2017
The sum of divisors d of n such that n/d is squarefree. - Amiram Eldar, Jan 11 2019
Psi(n)/n is a new maximum for each primorial (A002110) [proof in link: Patrick Sole and Michel Planat, Proposition 1 page 2]. - Bernard Schott, May 21 2020
From Jianing Song, Nov 05 2022: (Start)
a(n) is the number of subgroups of C_n X C_n that are isomorphic to C_n, where C_n is the cyclic group of order n. Proof: the number of elements of order n in C_n X C_n is A007434(n) (they are the elements of the form (a,b) in C_n X C_n where gcd(a,b,n) = 1), and each subgroup isomorphic to C_n contains phi(n) generators, so the number of such subgroups is A007434(n)/phi(n) = a(n).
The total number of order-n subgroups of C_n X C_n is A000203(n). (End)

Examples

			Let L = <V,W> be a 2-dimensional lattice. The 6 primitive sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V+W,2W>, <2V,2W+V>. Compare A000203.
G.f. = x + 3*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 12*x^8 + 12*x^9 + ...
		

References

  • Tom Apostol, Intro. to Analyt. Number Theory, page 71, Problem 11, where this is called phi_1(n).
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 228.
  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 220.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other sequences that count lattices/sublattices: A000203 (with primitive condition removed), A003050 (hexagonal lattice instead), A003051, A054345, A160889, A160891.
Cf. A301594.
Cf. A063659 (Möbius transform), A082020 (average order), A156303 (Euler transform), A173290 (partial sums), A175836 (partial products), A203444 (range).
Cf. A210523 (record values).
Algebraic combinations with other core sequences: A000082, A033196, A175732, A291784, A344695.
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), this sequence (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Cf. A082695 (Dgf at s=3), A339925 (Dgf at s=4).

Programs

  • Haskell
    import Data.Ratio (numerator)
    a001615 n = numerator (fromIntegral n * (product $
                map ((+ 1) . recip . fromIntegral) $ a027748_row n))
    -- Reinhard Zumkeller, Jun 03 2013, Apr 12 2012
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[MoebiusMu(k)^2*x^k/(1-x^k)^2: k in [1..2*m]]) )); // G. C. Greubel, Nov 23 2018
    
  • Maple
    A001615 := proc(n) n*mul((1+1/i[1]),i=ifactors(n)[2]) end; # Mark van Hoeij, Apr 18 2012
  • Mathematica
    Join[{1}, Table[n Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]), {n, 2, 100}]] (* T. D. Noe, Jun 11 2006 *)
    Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 100}] (* Jan Mangaldan, Aug 22 2013 *)
    a[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; (* Michael Somos, Jan 10 2015 *)
    Table[n Product[1 + 1/p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 08 2021 *)
    Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}] (* Eric W. Weisstein, Mar 09 2025 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n])};
    
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv( n, d, moebius(d)^2 / d))}; /* Michael Somos, Nov 10 2006 */
    
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    a(n) = n * sumdivmult(n, d, issquarefree(d)/d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist) # Chai Wah Wu, Jun 03 2021
  • Sage
    def A001615(n) : return n*mul(1+1/p for p in prime_divisors(n))
    [A001615(n) for n in (1..69)] # Peter Luschny, Jun 10 2012
    

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s). - Michael Somos, May 19 2000
Multiplicative with a(p^e) = (p+1)*p^(e-1). - David W. Wilson, Aug 01 2001
a(n) = A003557(n)*A048250(n) = n*A000203(A007947(n))/A007947(n). - Labos Elemer, Dec 04 2001
a(n) = n*Sum_{d|n} mu(d)^2/d, Dirichlet convolution of A008966 and A000027. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2 * d. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_2(n)/J_1(n) = J_2(n)/phi(n) = A007434(n)/A000010(n), where J_k is the k-th Jordan Totient Function.
a(n) = (1/phi(n))*Sum_{d|n} mu(n/d)*d^(b-1), for b=3. (End)
a(n) = n / Sum_{d|n} mu(d)/a(d). - Enrique Pérez Herrero, Jun 06 2012
a(n^k)= n^(k-1) * a(n). - Enrique Pérez Herrero, Jan 05 2013
If n is squarefree, then a(n) = A049417(n) = A000203(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{d^2 | n} mu(d) * A000203(n/d^2). - Álvar Ibeas, Dec 20 2014
The average order of a(n) is 15*n/Pi^2. - Enrique Pérez Herrero, Jan 14 2012. See Apostol. - N. J. A. Sloane, Sep 04 2017
G.f.: Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 25 2018
a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - Daniel Suteu, Mar 09 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} 2^omega(gcd(n,k)).
a(n) = Sum_{k=1..n} 2^omega(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = abs(A158523(n)) = A158523(n) * A008836(n). - Enrique Pérez Herrero, Nov 07 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^2). - Ridouane Oudra, Mar 26 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997

A065764 Sum of divisors of square numbers.

Original entry on oeis.org

1, 7, 13, 31, 31, 91, 57, 127, 121, 217, 133, 403, 183, 399, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 1281, 1093, 1767, 871, 2821, 993, 2047, 1729, 2149, 1767, 3751, 1407, 2667, 2379, 3937, 1723, 5187, 1893, 4123, 3751, 3871, 2257, 6643
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Comments

Unlike A065765, the sums of divisors of squares give remainders r=1,3,5 modulo 6: sigma(4)==1, sigma(49)==3, sigma(2401)==5 (mod 6). See also A097022.
a(n) is also the number of ordered pairs of positive integers whose LCM is n, (see LeVeque). - Enrique Pérez Herrero, Aug 26 2013
Main diagonal of A319526. - Omar E. Pol, Sep 25 2018
Subsequence of primes is A023195 \ {3}; also, 31 is the only known prime to be twice in the data because 31 = sigma(16) = sigma(25) (see A119598 and Goormaghtigh conjecture link). - Bernard Schott, Jan 17 2021

References

  • W. J. LeVeque, Fundamentals of Number Theory, pp. 125 Problem 4, Dover NY 1996.

Crossrefs

Programs

  • GAP
    a:=List([1..50],n->Sigma(n^2));; Print(a); # Muniru A Asiru, Jan 01 2019
    
  • Magma
    [SumOfDivisors(n^2): n in [1..48]]; // Bruno Berselli, Apr 12 2011
    
  • Maple
    with(numtheory): [sigma(n^2)$n=1..50]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[Plus@@Divisors[n^2], {n, 48}] (* Alonso del Arte, Feb 24 2012 *)
    f[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
  • MuPAD
    numlib::sigma(n^2)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n) = sigma(n^2); \\ Harry J. Smith, Oct 30 2009
    
  • Python
    from math import prod
    from sympy import factorint
    def A065764(n): return prod((p**((e<<1)+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023
  • Sage
    [sigma(n^2,1)for n in range(1,49)] # Zerinvary Lajos, Jun 13 2009
    

Formula

a(n) = sigma(n^2) = A000203(A000290(n)).
Multiplicative with a(p^e) = (p^(2*e+1)-1)/(p-1). - Vladeta Jovovic, Dec 01 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)/zeta(2*s-2), inverse Mobius transform of A000082. - R. J. Mathar, Mar 06 2011
Dirichlet convolution of A001157 by the absolute terms of A055615. Also the Dirichlet convolution of A048250 by A000290. - R. J. Mathar, Apr 12 2011
a(n) = Sum_{d|n} d*Psi(d), where Psi is A001615. - Enrique Pérez Herrero, Feb 25 2012
a(n) >= (n+1) * sigma(n) - n, where sigma is A000203, equality holds if n is in A000961. - Enrique Pérez Herrero, Apr 21 2012
Sum_{k=1..n} a(k) ~ 5*Zeta(3) * n^3 / Pi^2. - Vaclav Kotesovec, Jan 30 2019
Sum_{k>=1} 1/a(k) = 1.3947708738535614499846243600124612760835313454790187655653356563282177118... - Vaclav Kotesovec, Sep 20 2020

A159634 Coefficient for dimensions of spaces of modular & cusp forms of weight k/2, level 4*n and trivial character, where k>=5 is odd.

Original entry on oeis.org

1, 2, 4, 4, 6, 8, 8, 8, 12, 12, 12, 16, 14, 16, 24, 16, 18, 24, 20, 24, 32, 24, 24, 32, 30, 28, 36, 32, 30, 48, 32, 32, 48, 36, 48, 48, 38, 40, 56, 48, 42, 64, 44, 48, 72, 48, 48, 64, 56, 60, 72, 56, 54, 72, 72, 64, 80, 60, 60, 96, 62, 64, 96, 64, 84, 96, 68, 72, 96, 96
Offset: 1

Views

Author

Steven Finch, Apr 17 2009

Keywords

Comments

Denote dim{M_k(Gamma_0(N))} by m(k,N) and dim{S_k(Gamma_0(N))} by s(k,N).
We have
m(7/2,N)+s(5/2,N) = m(5/2,N)+s(7/2,N) =
(m(11/2,N)+s(9/2,N))/2 = (m(9/2,N)+s(11/2,N))/2 =
(m(15/2,N)+s(13/2,N))/3 = (m(13/2,N)+s(15/2,N))/3 = ...
(m((4j+3)/2,N)+s((4j+1)/2,N))/j = (m((4j+1)/2,N)+s((4j+3)/2,N))/j = ...
where N is any positive multiple of 4 and j>=1.
Multiplicative because A001615 is multiplicative and a(1) = A001615(2)/3 = 1. - Andrew Howroyd, Aug 08 2018

References

  • Ken Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and q-series. American Mathematical Society, 2004, (p. 16, theorem 1.56).

Crossrefs

Programs

  • Magma
    [[4*n,(Dimension(HalfIntegralWeightForms(4*n,7/2))+ Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,5/2))))/2] : n in [1..70]]; [[4*n,(Dimension(HalfIntegralWeightForms(4*n,5/2))+ Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,7/2))))/2] : n in [1..70]];
    
  • Mathematica
    (* per Enrique Pérez Herrero's conjecture proved by P. Humphries, see link *)
    dedekindPsi[n_Integer]:=n Apply[Times,1+1/Map[First,FactorInteger[n]]];
    1/3 dedekindPsi /@ (2 Range[70]) (* Wouter Meeussen, Apr 06 2014 *)
  • PARI
    a(n) = 2*n*sumdiv( 2*n, d, moebius(d)^2 / d)/3; \\ Andrew Howroyd, Aug 08 2018

Formula

a(n) = A159636(n) + A159630(n). - Enrique Pérez Herrero, Apr 15 2014
a(n) = A001615(2*n)/3. - Enrique Pérez Herrero, Jan 31 2014
From Peter Bala, Mar 19 2019: (Start)
a(n)= n*Product_{p|n, p odd prime} (1 + 1/p).
a(n) = Sum_{d|n, d odd} mu(d)^2*n/d, where mu(n) = A008683(n) is the Möbius function.
If n = m*2^k , where 2^k is the largest power of 2 dividing n, then
a(n) = (2^k)*a(m) = 2^k * Sum_{d^2|m} mu(d)*sigma(m/d^2), where sigma(n) = A000203(n) is the sum of the divisors of n, and also
a(n) = 2^k * Sum_{d|m} 2^omega(d)*phi(m/d), where omega(n) = A001221(n) is the number of different primes dividing n and phi(n) = A000010 is the Euler totient function.
O.g.f.: Sum_{n >= 1} mu(2*n-1)^2*x^(2^n-1)/(1 - x^(2*n-1))^2. (End)
a(n) = A000082(n)/A080512(n). [obvious by prime products, discovered by Sequence Machine]. - R. J. Mathar, Jun 24 2021
From Amiram Eldar, Nov 17 2022: (Start)
Multiplicative with a(2^e) = 2^e, and a(p^e) = (p+1)*p^(e-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 6/Pi^2 = 0.607927... (A059956). (End)

A181797 a(n) = n multiplied by the sum of its squarefree divisors (A048250(n)).

Original entry on oeis.org

1, 6, 12, 12, 30, 72, 56, 24, 36, 180, 132, 144, 182, 336, 360, 48, 306, 216, 380, 360, 672, 792, 552, 288, 150, 1092, 108, 672, 870, 2160, 992, 96, 1584, 1836, 1680, 432, 1406, 2280, 2184, 720, 1722, 4032, 1892, 1584, 1080, 3312, 2256, 576, 392, 900
Offset: 1

Views

Author

Matthew Vandermast, Dec 05 2010

Keywords

Comments

Sum of reciprocals converges to Pi^2/6. The natural density of positive integers m such that A003557(m) = n equals 6/(a(n)*Pi^2).
If m is coprime to 6, a(3m) = a(4m).
Apparently the absolute values of the Dirichlet inverse of A000082. - R. J. Mathar, Mar 14 2011

Crossrefs

Programs

  • Maple
    A181797 := proc(n) local f; f := ifactors(n)[2] ;  mul( op(1,d)^op(2,d)*( op(1,d)+1),d=f) ; end proc: # R. J. Mathar, Dec 05 2010
  • Mathematica
    Table[n*Sum[d*MoebiusMu[d]^2, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *)
  • PARI
    a(n)=n*sumdiv(n,d,d*moebius(d)^2)
  • Sage
    A181797 = lambda n: n * sum(d for d in divisors(n) if is_squarefree(d)) # D. S. McNeil, Dec 05 2010
    

Formula

a(n) = n*A048250(n). Multiplicative with a(p^e) = (p+1)*p^e.
Dirichlet g.f. zeta(s-1)*zeta(s-2)/zeta(2*s-4). - R. J. Mathar, Mar 14 2011
G.f.: x*f'(x), where f(x) = Sum_{k>=1} mu(k)^2*k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 10 2017
Sum_{k=1..n} a(k) ~ n^3 / 3. - Vaclav Kotesovec, Feb 02 2019
Sum_{k>=1} 1/a(k) = Pi^2/6. - Vaclav Kotesovec, Sep 19 2020

A033196 a(n) = n^3 * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 12, 36, 96, 150, 432, 392, 768, 972, 1800, 1452, 3456, 2366, 4704, 5400, 6144, 5202, 11664, 7220, 14400, 14112, 17424, 12696, 27648, 18750, 28392, 26244, 37632, 25230, 64800, 30752, 49152, 52272, 62424, 58800, 93312, 52022, 86640
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n*DivisorSum[n, MoebiusMu[n/#] DivisorSigma[1, #^2]&]; Array[a, 40] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    a(n)=direuler(p=2,n,(1+p^2*X)/(1-p^3*X))[n]
    
  • PARI
    a(n)=sumdiv(n,d,moebius(d)*sigma(n^3/d^2)) \\ Benoit Cloitre, Feb 16 2008

Formula

Dirichlet g.f.: zeta(s-2)*zeta(s-3)/zeta(2*s-4).
a(n) = n^2 * A001615(n) = n * A000082(n).
Multiplicative with a(p^e) = p^e*p^(2*e-1)*(p+1). - Vladeta Jovovic, Nov 16 2001
a(n) = Sum_{d|n} mu(d)*sigma(n^3/d^2). - Benoit Cloitre, Feb 16 2008
a(n) = A001615(n^3) = A001615(n^k)/n^(k-3), with k>2. - Enrique Pérez Herrero, Mar 06 2012
Sum_{k=1..n} a(k) ~ 15*n^4 / (4*Pi^2). - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p/((p+1)*(p^3-1))) = 1.1392293101137663761606045655621290749920977339371831842000361508083066155... - Vaclav Kotesovec, Sep 20 2020

Extensions

Additional comments from Michael Somos, May 19 2000

A335762 Decimal expansion of Product_{p prime} (1 + p/((p-1)*(p+1)^2)).

Original entry on oeis.org

1, 4, 5, 0, 0, 3, 2, 1, 4, 5, 3, 6, 2, 1, 2, 0, 8, 3, 1, 6, 0, 8, 3, 9, 5, 8, 8, 7, 1, 8, 9, 2, 2, 3, 4, 2, 2, 3, 2, 5, 0, 6, 2, 1, 1, 7, 4, 4, 7, 1, 6, 7, 1, 4, 4, 6, 5, 2, 4, 3, 8, 8, 3, 6, 7, 0, 9, 4, 1, 6, 3, 3, 7, 2, 9, 3, 8, 0, 8, 3, 0, 7, 6, 8, 1, 3, 5, 8, 7, 0, 3, 6, 5, 5, 6, 3, 9, 1, 4, 6, 5, 5, 8, 5, 5
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Comments

The asymptotic mean of A367987. - Amiram Eldar, Dec 23 2023

Examples

			1.450032145362120831608395887189223422325062117447167...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-1, 1, 2, 0, -1}, {0, 2, -3, 6, -5}, m]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n])/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat(1 + p/((p-1)*(p+1)^2)) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{k>=1} 1/A000082(k) = Sum_{k>=1} 1/(k * A001615(k)).
Equals A013661 * A065465. - Amiram Eldar, Dec 23 2023

Extensions

More digits from Vaclav Kotesovec, Sep 19 2020

A076566 Greatest prime divisor of 3n+3 (sum of three successive integers).

Original entry on oeis.org

3, 3, 3, 5, 3, 7, 3, 3, 5, 11, 3, 13, 7, 5, 3, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 3, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 19, 29, 59, 5, 61, 31, 7, 3, 13, 11, 67, 17, 23, 7, 71, 3, 73, 37, 5, 19, 11, 13, 79, 5, 3, 41, 83, 7
Offset: 1

Views

Author

Zak Seidov, Oct 19 2002

Keywords

Comments

a(n) = A006530(A000082(n+1)). - Reinhard Zumkeller, Oct 03 2012

Crossrefs

Cf. A008585.

Programs

  • Haskell
    a076566 = a006530 . (* 3) . (+ 1)  -- Reinhard Zumkeller, Oct 03 2012
  • Mathematica
    FactorInteger[Total[#]][[-1,1]]&/@Partition[Range[100],3,1]  (* Harvey P. Dale, Apr 03 2011 *)

A070732 Size of largest conjugacy class in the group GL(2,Z_n).

Original entry on oeis.org

1, 3, 12, 12, 30, 36, 56, 48, 108, 90, 132, 144, 182, 168, 360, 192, 306, 324, 380, 360, 672, 396, 552, 576, 750, 546, 972, 672, 870, 1080, 992, 768, 1584, 918, 1680, 1296, 1406, 1140, 2184, 1440, 1722, 2016, 1892, 1584, 3240, 1656, 2256, 2304, 2744, 2250
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{a = 1, b = FactorInteger[n]}, While[ Length[b] > 0, a = a*(b[[1, 1]] + 1)*b[[1, 1]]^(2b[[1, 2]] - If[ OddQ[ b[[1, 1]]], 1, 2]); b = Drop[b, 1]]; a]; Table[ f[n], {n, 1, 55}]
    Table[n*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}]/EulerPhi[2*n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 01 2019 *)
    f[p_, e_] := (p + 1)*p^(2*e - If[p == 2, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]+1)*f[i,1]^(2*f[i,2] - if(f[i,1]==2,2,1)));} \\ Amiram Eldar, Nov 05 2022

Formula

Multiplicative with a(p^e) = (p+1)*p^(2e - k), k = 1 if p is odd, k = 2 if p is 2.
a(n) = A000056(n)/A000010(2*n). - Vladeta Jovovic, Dec 22 2003
From R. J. Mathar, Apr 14 2011: (Start)
Dirichlet g.f.: (2^s-1)*zeta(s-1)*zeta(s-2)/((2^s+2)*zeta(2s-2)).
Dirichlet convolution of A000082 with a signed variant of A099892. (End)
Sum_{k=1..n} a(k) ~ 7*n^3 / (2*Pi^2). - Vaclav Kotesovec, Feb 01 2019
Sum_{n>=1} 1/a(n) = (13/11) * zeta(2)^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = (13/11) * A098198 * A330523 = 1.7136743536... . - Amiram Eldar, Nov 05 2022

Extensions

Edited by Robert G. Wilson v, May 20 2002
Showing 1-10 of 11 results. Next