A000087 Number of unrooted nonseparable planar maps with n edges and a distinguished face.
2, 1, 2, 4, 10, 37, 138, 628, 2972, 14903, 76994, 409594, 2222628, 12281570, 68864086, 391120036, 2246122574, 13025721601, 76194378042, 449155863868, 2666126033850, 15925105028685, 95664343622234, 577651490729530
Offset: 1
Keywords
References
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..200
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
- W. G. Brown, Enumeration of non-separable planar maps
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
Programs
-
Mathematica
q[n_] := If[EvenQ[n], 0, 2(n+1)Binomial[3(n+1)/2, (n+1)/2]/(3(3n-1)(3n+1)) ]; a[n_] := (1/(3n))((n+2)Binomial[3n, n]/((3n-2)(3n-1)) + Sum[EulerPhi[ n/k] Binomial[3k, k], {k, Divisors[n] // Most}]) + q[n]; Array[a, 30] (* Jean-François Alcover, Feb 04 2016, after Valery A. Liskovets *)
-
PARI
q(n) = if(n%2, 2*(n + 1)*binomial(3*(n + 1)/2, (n + 1)/2) / (3*(3*n - 1)*(3*n + 1)), 0); a(n) = (1/(3*n)) * ((n + 2) * binomial(3*n, n)/((3*n - 2) * (3*n - 1)) + sum(k=1, n - 1, if(Mod(n, k)==0, eulerphi(n/k) * binomial(3*k, k)))) + q(n); \\ Indranil Ghosh, Apr 04 2017
Formula
a(n) = (1/3n)[(n+2)binomial(3n, n)/((3n-2)(3n-1)) + Sum_{0A000010, q(n)=0 if n is even and q(n)=2(n+1)binomial(3(n+1)/2, (n+1)/2)/(3(3n-1)(3n+1)) if n is odd. - Valery A. Liskovets, Mar 17 2005
a(n) ~ 3/(8 * sqrt(3*Pi))*(27/4)^n / n^(5/2). - Cedric Lorand, Apr 18 2022
Extensions
More terms from T. D. Noe, Mar 14 2007
Name corrected by Cyril Banderier, Apr 04 2017
Name clarified by Andrew Howroyd, Mar 29 2021
Comments