A000102 a(n) = number of compositions of n in which the maximum part size is 4.
0, 0, 0, 0, 1, 2, 5, 12, 27, 59, 127, 269, 563, 1167, 2400, 4903, 9960, 20135, 40534, 81300, 162538, 324020, 644282, 1278152, 2530407, 5000178, 9863763, 19427976, 38211861, 75059535, 147263905, 288609341, 565047233, 1105229439, 2159947998, 4217784107, 8230006378
Offset: 0
Examples
For example, a(6)=5 counts 1+1+4, 2+4, 4+2, 4+1+1, 1+4+1. - _David Callan_, Dec 09 2004 a(6)=5 because there are 5 binary sequences of length 5 in which the longest run of consecutive 0's is exactly 3; 00010, 00011, 01000, 10001, 11000. - _Geoffrey Critzer_, Nov 06 2008
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 155.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- Nick Hobson, Python program for this sequence
- J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (2, 1, 0, -2, -3, -2, -1).
Programs
-
Maple
a:= n-> (Matrix(7, (i,j)-> if i+1=j then 1 elif j=1 then [2, 1, 0, -2, -3, -2, -1][i] else 0 fi)^n)[1,5]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 07 2008
-
Mathematica
a[n_] := MatrixPower[ Table[ Which[i+1 == j, 1, j == 1, {2, 1, 0, -2, -3, -2, -1}[[i]], True, 0], {i, 1, 7}, {j, 1, 7}], n][[1, 5]]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, May 28 2013, after Alois P. Heinz *) LinearRecurrence[{2,1,0,-2,-3,-2,-1},{0,0,0,0,1,2,5},40] (* Harvey P. Dale, Jul 01 2013 *)
Formula
G.f.: x^4/(1 - x - x^2 - x^3)/(1 - x - x^2 - x^3 - x^4).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-4) - 3*a(n-5) - 2*a(n-6) - a(n-7). Convolution of tribonacci and tetranacci numbers (A000073 and A000078). - Franklin T. Adams-Watters, Jan 13 2006
Extensions
More terms from Sascha Kurz, Aug 15 2002
Definition improved by David Callan and Franklin T. Adams-Watters
Comments