A000105 Number of free polyominoes (or square animals) with n cells.
1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678, 43191857688, 168047007728, 654999700403, 2557227044764, 9999088822075, 39153010938487, 153511100594603
Offset: 0
Examples
a(0) = 1 as there is 1 empty polyomino with #cells = 0. - _Fred Lunnon_, Jun 24 2020
References
- S. W. Golomb, Polyominoes, Appendix D, p. 152; Princeton Univ. Pr. NJ 1994
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
- D. A. Klarner, The Mathematical Gardner, p. 252 Wadsworth Int. CA 1981
- W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
- W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
- Ed Pegg, Jr., Polyform puzzles, in Tribute to a Mathemagician, Peters, 2005, pp. 119-125.
- R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- John Mason, Table of n, a(n) for n = 0..50 (terms 0..45,47 from Toshihiro Shirakawa)
- Z. Abel, E. Demaine, M. Demaine, H. Matsui and G. Rote, Common Developments of Several Different Orthogonal Boxes.
- G. Barequet, M. Moffie, A. Ribo and G. Rote, Counting polyominoes on twisted cylinders, Integers 6 (2006), A22, 37 pp. (electronic).
- K. S. Brown, Polyomino Enumerations
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
- Juris Čerņenoks and Andrejs Cibulis, Tetrads and their Counting, Baltic J. Modern Computing, Vol. 6 (2018), No. 2, 96-106.
- A. Clarke, Polyominoes
- A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen. 28(1995) 891-904.
- I. Jensen, Enumerations of lattice animals and trees, arXiv:cond-mat/0007239 [cond-mat.stat-mech], 2000.
- I. Jensen and A. J. Guttmann, Statistics of lattice animals (polyominoes) and polygons, Journal of Physics A: Mathematical and General, vol. 33, pp. L257-L263, 2000.
- M. Keller, Counting polyforms.
- D. A. Klarner and R. L. Rivest, A procedure for improving the upper bound for the number of n-ominoes, Canadian J. of Mathematics, 25 (1973), 585-602.
- N. Madras, A pattern theorem for lattice clusters, arXiv:math/9902161 [math.PR], 1999; Annals of Combinatorics, 3 (1999), 357-384.
- John Mason, Counting size 50 polyominoes -V2
- S. Mertens, Lattice animals: a fast enumeration algorithm and new perimeter polynomials, J. Statistical Physics, vol. 58, no. 5/6, pp. 1095-1108, Mar. 1990.
- Stephan Mertens and Markus E. Lautenbacher, Counting lattice animals: A parallel attack J. Stat. Phys., vol. 66, no. 1/2, pp. 669-678, 1992.
- W. R. Muller, K. Szymanski, J. V. Knop, and N. Trinajstic, On the number of square-cell configurations, Theor. Chim. Acta 86 (1993) 269-278
- Joseph Myers, Polyomino tiling
- Tomás Oliveira e Silva, Animal enumerations on regular tilings in Spherical, Euclidean and Hyperbolic 2-dimensional spaces
- Tomás Oliveira e Silva, Animal enumerations on the {4,4} Euclidean tiling [The enumeration to order 28]
- T. R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy)
- Anuj Pathania, Scalable Task Schedulers for Many-Core Architectures, Ph.D. Thesis, Karlsruher Instituts für Technologie (Germany, 2018).
- Ed Pegg, Jr., Illustrations of polyforms
- Henri Picciotto, Polyomino Lessons
- Jaime Rangel-Mondragón, Polyominoes and Related Families, The Mathematica Journal, Volume 9, Issue 3.
- D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
- D. H. Redelmeier, Table 3 of Counting polyominoes...
- Toshihiro Shirakawa, Harmonic Magic Square, pp 3-4: Enumeration of Polyominoes considering the symmetry, April 2012.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Polyomino
- Wikipedia, The 35 hexominoes
- Wikipedia, The 108 heptominoes
- Wikipedia, The 369 octominoes
- Wikipedia, Polyomino
- D. Xu, T. Horiyama, T. Shirakawa and R. Uehara, Common Developments of Three Incongruent Boxes of Area 30, in Proc. 12th Annual Conference, TAMC 2015, Singapore, May 18-20, 2015, LNCS Vol. 9076, pp. 236-247.
- L. Zucca, Pentominoes
- L. Zucca, The 12 pentominoes
- Index entries for "core" sequences
Crossrefs
Sequences classifying polyominoes by symmetry group: A006746, A006747, A006748, A006749, A056877, A056878, A142886, A144553, A144554.
Cf. A001168 (not reduced by D_8 symmetry), A000104 (no holes), A054359, A054360, A001419, A000988, A030228 (chiral polyominoes).
See A006765 for another version.
Excluding a(0), 8th and 9th row of A366766.
Programs
-
Mathematica
(* In this program by Jaime Rangel-Mondragón, polyominoes are represented as a list of Gaussian integers. *) polyominoQ[p_List] := And @@ ((IntegerQ[Re[#]] && IntegerQ[Im[#]])& /@ p); rot[p_?polyominoQ] := I*p; ref[p_?polyominoQ] := (# - 2 Re[#])& /@ p; cyclic[p_] := Module[{i = p, ans = {p}}, While[(i = rot[i]) != p, AppendTo[ans, i]]; ans]; dihedral[p_?polyominoQ] := Flatten[{#, ref[#]}& /@ cyclic[p], 1]; canonical[p_?polyominoQ] := Union[(# - (Min[Re[p]] + Min[Im[p]]*I))& /@ p]; allPieces[p_] := Union[canonical /@ dihedral[p]]; polyominoes[1] = {{0}}; polyominoes[n_] := polyominoes[n] = Module[{f, fig, ans = {}}, fig = ((f = #1; ({f, #1 + 1, f, #1 + I, f, #1 - 1, f, #1 - I}&) /@ f)&) /@ polyominoes[n - 1]; fig = Partition[Flatten[fig], n]; f = Select[Union[canonical /@ fig], Length[#1] == n &]; While[f != {}, ans = {ans, First[f]}; f = Complement[f, allPieces[First[f]]]]; Partition[Flatten[ans], n]]; a[n_] := a[n] = Length[ polyominoes[n]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Mar 24 2015, after Jaime Rangel-Mondragón *)
Formula
Extensions
Extended to n=28 by Tomás Oliveira e Silva
Link updated by William Rex Marshall, Dec 16 2009
Edited by Gill Barequet, May 24 2011
Misspelling "polyominos" corrected by Don Knuth, May 03 2016
a(29)-a(45), a(47) from Toshihiro Shirakawa
a(46) calculated using values from A001168 (I. Jensen), A006748/A056877/A056878/A144553/A142886 (Robert A. Russell) and A006746/A006747 (John Mason), Nov 14 2021
Comments