cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000116 Number of even sequences with period 2n (bisection of A000013).

Original entry on oeis.org

1, 2, 4, 8, 20, 56, 180, 596, 2068, 7316, 26272, 95420, 349716, 1290872, 4794088, 17896832, 67110932, 252648992, 954444608, 3616828364, 13743921632, 52357746896, 199911300472, 764877836468, 2932031358484, 11258999739560, 43303843861744, 166799988689300
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000116 n = a000116_list !! n
    a000116_list = bis a000013_list where bis (x:_:xs) = x : bis xs
    -- Reinhard Zumkeller, Jul 08 2013
  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(phi(2*d)*2^(2*n/d), d=divisors(2*n))/(4*n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 25 2012
  • Mathematica
    a[n_] := Sum[ EulerPhi[2d]*2^(2n/d), {d, Divisors[2n]}]/(4n); a[0]=1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Sep 13 2012, after Alois P. Heinz *)

Formula

a(2*n) + a(n) = 2 * A000208(2*n); a(2*n+1) = 2 * A000208(2*n+1). - Reinhard Zumkeller, Jul 08 2013
a(n) ~ 4^(n-1) / n. - Cedric Lorand, Apr 18 2022

Extensions

More terms from David W. Wilson, Jan 13 2000

A000206 Even sequences with period 2n.

Original entry on oeis.org

1, 1, 3, 4, 12, 22, 71, 181, 618, 1957, 6966, 24367, 89010, 324766, 1204815, 4482400, 16802826, 63195016, 238711285, 904338163, 3436380192, 13089961012, 49979421837, 191221556269, 733014218506, 2814758323498, 10825986453978, 41700030726757, 160842946895004
Offset: 0

Views

Author

Keywords

Comments

"Even" orbits of binary necklaces of length 2n under group D_n X S_2.

References

  • E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          `if`(n=0, 1, 2^(floor(n/2)-1)
               +add(phi(2*d) *2^(n/d), d=divisors(n))/(4*n))
        end:
    a:= n-> `if`(n=0, 1, `if`(irem(n, 2)=0,
             (b(2*n) +b(n) +4^(n/2-1) -2^(n/2-1))/2, b(2*n)/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 25 2012
  • Mathematica
    a[0] = 1; a11[n_] := Fold[#1 + EulerPhi[2*#2]*(2^(n/#2)/(2*n)) & , 2^Floor[n/2], Divisors[n]]/2; a[(n_)?EvenQ] := (a11[2*n] + a11[n] + 4^(n/2 - 1) - 2^(n/2 - 1))/2; a[(n_)?OddQ] := a11[2*n]/2; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Sep 01 2011, after PARI prog. *)
  • PARI
    {A000206(n)=if(n==0,1, if(n%2==0,(A000011(2*n)+A000011(n)+4^(n/2-1)-2^(n/2-1))/2, A000011(2*n)/2))} \\ Randall L Rathbun, Jan 11 2002

Formula

a(0)=1, a(n) = (A000011(2*n) + A000011(n) + 4^(n/2-1) - 2^(n/2-1))/2 if n is even, a(n) = A000011(2*n)/2 if n is odd. - Randall L Rathbun, Jan 11 2002

Extensions

More terms from Randall L Rathbun, Jan 11 2002
Showing 1-2 of 2 results.