A000219 Number of plane partitions (or planar partitions) of n.
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, 2485, 4167, 6879, 11297, 18334, 29601, 47330, 75278, 118794, 186475, 290783, 451194, 696033, 1068745, 1632658, 2483234, 3759612, 5668963, 8512309, 12733429, 18974973, 28175955, 41691046, 61484961, 90379784, 132441995, 193487501, 281846923
Offset: 0
Examples
A planar partition of 13: 4 3 1 1 2 1 1 a(5) = (1/5!)*(sigma_2(1)^5+10*sigma_2(2)*sigma_2(1)^3+20*sigma_2(3)*sigma_2(1)^2+ 15*sigma_2(1)*sigma_2(2)^2+30*sigma_2(4)*sigma_2(1)+20*sigma_2(2)*sigma_2(3)+24*sigma_2(5)) = 24. - _Vladeta Jovovic_, Jan 10 2003 From _David Scambler_ and _Joerg Arndt_, May 01 2013: (Start) There are a(4) = 13 partitions of 4 objects of 2 colors ('b' and 'w'), each part containing at least one black object: 1 black part: [ bwww ] 2 black parts: [ bbww ] [ bww, b ] [ bw, bw ] 3 black parts: [ bbbw ] [ bbw, b ] [ bb, bw ] (but not: [bw, bb ] ) [ bw, b, b ] 4 black parts: [ bbbb ] [ bbb, b ] [ bb, bb ] [ bb, b, b ] [ b, b, b, b ] (End) From _Geoffrey Critzer_, Nov 29 2014: (Start) The corresponding partitions of the integer 4 are: 4''' 4'' 3'' + 1 2' + 2' 4' 3' + 1 2 + 2' 2' + 1 + 1 4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1. (End) From _Gus Wiseman_, Sep 25 2018: (Start) Non-isomorphic representatives of the a(4) = 13 chains of multisets whose dual is also a chain of multisets: {{1,1,1,1}} {{1,1,2,2}} {{1,2,2,2}} {{1,2,3,3}} {{1,2,3,4}} {{1},{1,1,1}} {{2},{1,2,2}} {{3},{1,2,3}} {{1,1},{1,1}} {{1,2},{1,2}} {{1},{1},{1,1}} {{2},{2},{1,2}} {{1},{1},{1},{1}} (End) G.f. = 1 + x + 3*x^2 + 6*x^3 + 13*x^4 + 24*x^5 + 48*x^6 + 86*x^7 + 160*x^8 + ...
References
- G. Almkvist, The differences of the number of plane partitions, Manuscript, circa 1991.
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 241.
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; pp(n) on p. 10.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 575.
- L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.6).
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (5.4.5).
- P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Royal Soc., 211 (1912), 345-373.
- P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
- P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II. - N. J. A. Sloane, May 21 2014
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Suresh Govindarajan, Table of n, a(n) for n = 0..6500 (first 401 terms from T. D. Noe)
- G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
- G. E. Andrews and P. Paule, MacMahon's partition analysis XII: Plane Partitions, J. Lond. Math. Soc., 76 (2007), 647-666.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
- Michael Beeler, R. William Gosper and Richard C. Schroeppel, HAKMEM, ITEM 18, Memo AIM-239, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., 1972.
- Edward A. Bender, Asymptotic methods in enumeration, SIAM Review 16 (1974), no. 4, p. 509.
- E. A. Bender and D. E. Knuth, Enumeration of Plane Partitions, J. Combin. Theory A. 13, 40-54, 1972.
- S. Benvenuti, B. Feng, A. Hanany and Y. H. He, Counting BPS operators in gauge theories: Quivers, syzygies and plethystics, arXiv:hep-th/0608050, p. 41-42.
- Henry Bottomley, Illustration of initial terms
- D. M. Bressoud and J. Propp, How the alternating sign matrix conjecture was solved, Notices Amer. Math. Soc., 46 (No. 6, 1999), 637-646.
- Shouvik Datta, M. R. Gaberdiel, W. Li, and C. Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016.
- Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions, arXiv:2004.08901 [math.CO], 2020.
- Steven Finch, Integer Partitions, September 22, 2004. [Cached copy, with permission of the author]
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 580.
- Bernhard Heim, Markus Neuhauser and Robert Tröger, Inequalities for Plane Partitions, arXiv:2109.15145 [math.CO], 2021.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 141
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016, p. 18.
- Vaclav Kotesovec, Graphs - The asymptotic ratio (250000 terms)
- D. E. Knuth, A Note on Solid Partitions, Math. Comp. 24, 955-961, 1970.
- Oleg Lazarev, Matt Mizuhara and Ben Reid, Some Results in Partitions, Plane Partitions, and Multipartitions, 13 August 2010.
- P. A. MacMahon, Combinatory analysis.
- J. Mangual, McMahon's Formula via Free Fermions, arXiv preprint arXiv:1210.7109 [math.CO], 2012. - From _N. J. A. Sloane_, Jan 01 2013
- Ville Mustonen and R. Rajesh, Numerical Estimation of the Asymptotic Behaviour of Solid Partitions ..., arXiv:cond-mat/0303607 [cond-mat.stat-mech], 2003.
- L. Mutafchiev and E. Kamenov, On The Asymptotic Formula for the Number of Plane Partitions..., arXiv:math/0601253 [math.CO], 2006; C. R. Acad. Bulgare Sci. 59(2006), No. 4, 361-366.
- Ken Ono, Sudhir Pujahari and Larry Rolen, Turán inequalities for the plane partition function, arXiv:2201.01352 [math.NT], 2022.
- I. Pak, Partition bijections, a survey, Ramanujan J. 12 (2006) 5-75.
- A. Rovenchak, Enumeration of plane partitions with a restricted number of parts, arXiv preprint arXiv:1401.4367 [math-ph], 2014.
- Raphael Schumacher, The self-counting identity, Fib. Quart., 55 (No. 2 2017), 157-167.
- N. J. A. Sloane, Transforms
- J. Stienstra, Mahler measure, Eisenstein series and dimers, arXiv:math/0502197 [math.NT], 2005.
- Balázs Szendrői, Non-commutative Donaldson-Thomas invariants and the conifold, Geometry & Topology 12.2 (2008): 1171-1202.
- Eric Weisstein's World of Mathematics, Plane Partition
- E. M. Wright, Rotatable partitions, J. London Math. Soc., 43 (1968), 501-505.
- Index entries for "core" sequences
Crossrefs
Programs
-
Julia
using Nemo, Memoize @memoize function a(n) if n == 0 return 1 end s = sum(a(n - j) * divisor_sigma(j, 2) for j in 1:n) return div(s, n) end [a(n) for n in 0:20] # Peter Luschny, May 03 2020
-
Maple
series(mul((1-x^k)^(-k),k=1..64),x,63); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( a(n-j)*numtheory[sigma][2](j), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Aug 17 2015
-
Mathematica
CoefficientList[Series[Product[(1 - x^k)^-k, {k, 64}], {x, 0, 64}], x] Zeta[3]^(7/36)/2^(11/36)/Sqrt[3 Pi]/Glaisher E^(3 Zeta[3]^(1/3) (n/2)^(2/3) + 1/12)/n^(25/36) (* asymptotic formula after Wright; Vaclav Kotesovec, Jun 23 2014 *) a[0] = 1; a[n_] := a[n] = Sum[a[n - j] DivisorSigma[2, j], {j, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *) CoefficientList[Series[Exp[Sum[DivisorSigma[2, n] x^n/n, {n, 50}]], {x, 0, 50}], x] (* Eric W. Weisstein, Feb 01 2018 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( exp( sum( k=1, n, x^k / (1 - x^k)^2 / k, x * O(x^n))), n))}; /* Michael Somos, Jan 29 2005 */
-
PARI
{a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^-k), n))}; /* Michael Somos, Jan 29 2005 */
-
PARI
my(N=66, x='x+O('x^N)); Vec( prod(n=1,N, (1-x^n)^-n) ) \\ Joerg Arndt, Mar 25 2014
-
PARI
A000219(n)=#PlanePartitions(n) \\ See A091298 for PlanePartitions(). For illustrative use: much slower than the above. - M. F. Hasler, Sep 24 2018
-
Python
from sympy import cacheit from sympy.ntheory import divisor_sigma @cacheit def A000219(n): if n <= 1: return 1 return sum(A000219(n - k) * divisor_sigma(k, 2) for k in range(1, n + 1)) // n print([A000219(n) for n in range(20)]) # R. J. Mathar, Oct 18 2009
-
SageMath
# uses[EulerTransform from A166861] b = EulerTransform(lambda n: n) print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
Formula
G.f.: Product_{k >= 1} 1/(1 - x^k)^k. - MacMahon, 1912.
Euler transform of sequence [1, 2, 3, ...].
a(n) ~ (c_2 / n^(25/36)) * exp( c_1 * n^(2/3) ), where c_1 = A249387 = 2.00945... and c_2 = A249386 = 0.23151... - Wright, 1931. Corrected Jun 01 2010 by Rod Canfield - see Mutafchiev and Kamenov. The exact value of c_2 is e^(2c)*2^(-11/36)*zeta(3)^(7/36)*(3*Pi)^(-1/2), where c = Integral_{y=0..inf} (y*log(y)/(e^(2*Pi*y)-1))dy = (1/2)*zeta'(-1).
The exact value of c_1 is 3*2^(-2/3)*Zeta(3)^(1/3) = 2.0094456608770137530649... - Vaclav Kotesovec, Sep 14 2014
a(n) = (1/n) * Sum_{k=1..n} a(n-k)*sigma_2(k), n > 0, a(0)=1, where sigma_2(n) = A001157(n) = sum of squares of divisors of n. - Vladeta Jovovic, Jan 20 2002
G.f.: exp(Sum_{n>0} sigma_2(n)*x^n/n). a(n) = Sum_{pi} Product_{i=1..n} binomial(k(i)+i-1, k(i)) where pi runs through all nonnegative solutions of k(1)+2*k(2)+..+n*k(n)=n. - Vladeta Jovovic, Jan 10 2003
From Vaclav Kotesovec, Nov 07 2016: (Start)
More precise asymptotics: a(n) ~ Zeta(3)^(7/36) * exp(3 * Zeta(3)^(1/3) * (n/2)^(2/3) + 1/12) / (A * sqrt(3*Pi) * 2^(11/36) * n^(25/36))
* (1 + c1/n^(2/3) + c2/n^(4/3) + c3/n^2), where
c1 = -0.23994424421250649114273759... = -277/(864*(2*Zeta(3))^(1/3)) - Zeta(3)^(2/3)/(1440*2^(1/3))
c2 = -0.02576771365117401620018082... = 353*Zeta(3)^(1/3)/(248832*2^(2/3)) - 17*Zeta(3)^(4/3)/(3225600*2^(2/3)) - 71575/(1492992*(2*Zeta(3))^(2/3))
c3 = -0.00533195302658826100834286... = -629557/859963392 - 42944125/(7739670528*Zeta(3)) + 14977*Zeta(3)/1114767360 - 22567*Zeta(3)^2/250822656000
and A = A074962 is the Glaisher-Kinkelin constant.
(End)
Extensions
Corrected by N. J. A. Sloane, Jul 29 2006
Minor edits by Vaclav Kotesovec, Oct 27 2014
Comments