cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A000666 Number of symmetric relations on n nodes.

Original entry on oeis.org

1, 2, 6, 20, 90, 544, 5096, 79264, 2208612, 113743760, 10926227136, 1956363435360, 652335084592096, 405402273420996800, 470568642161119963904, 1023063423471189431054720, 4178849203082023236058229792, 32168008290073542372004082199424
Offset: 0

Views

Author

Keywords

Comments

Each node may or may not be related to itself.
Also the number of rooted graphs on n+1 nodes.
The 1-to-1 correspondence is as follows: Given a rooted graph on n+1 nodes, replace each edge joining the root node to another node with a self-loop at that node and erase the root node. The result is an undirected graph on n nodes which is the graph of the symmetric relation.
Also the number of the graphs with n nodes whereby each node is colored or not colored. A loop can be interpreted as a colored node. - Juergen Will, Oct 31 2011

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 101, 241.
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000595, A001172, A001174, A006905, A000250, A054921 (connected relations).

Programs

  • Maple
    # see Riedel link above
  • Mathematica
    Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n]], Permutations[Range[n*(n-1)/2+1, n*(n+1)/2]], 2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,8}]] (* Geoffrey Critzer, Nov 04 2011 *)
    Table[Module[{eds,pms,leq},
    eds=Select[Tuples[Range[n],2],OrderedQ];
    pms=Map[Sort,eds/.Table[i->Part[#,i],{i,n}]]&/@Permutations[Range[n]];
    leq=Function[seq,PermutationCycles[Ordering[seq],Length]]/@pms;
    Total[Thread[Power[2,leq]]]/n!
    ],{n,0,8}] (* This is after Geoffrey Critzer's program but does not use the (deprecated) Combinatorica package. - Gus Wiseman, Jul 21 2016 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2] + 1, {i, 1, Length[v]}];
    a[n_] := a[n] = (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2 + 1)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000666(n): return int(sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024

Formula

Euler transform of A054921. - N. J. A. Sloane, Oct 25 2018
Let G_{n+1,k} be the number of rooted graphs on n+1 nodes with k edges and let G_{n+1}(x) = Sum_{k=0..n(n+1)/2} G_{n+1,k} x^k. Thus a(n) = G_{n+1}(1). Let S_n(x_1, ..., x_n) denote the cycle index for Sym_n. (cf. the link in A000142).
Compute x_1*S_n and regard it as the cycle index of a set of permutations on n+1 points and find the corresponding cycle index for the action on the n(n+1)/2 edges joining those points (the corresponding "pair group"). Finally, by replacing each x_i by 1+x^i gives G_{n+1}(x). [Harary]
Example, n=2. S_2 = (1/2)*(x_1^2+x_2), x_1*S_2 = (1/2)*(x_1^3+x_1*x_2). The pair group is (1/2)*(x_1^2+x_1*x_2) and so G_3(x) = (1/2)*((1+x)^3+(1+x)*(1+x^2)) = 1+2*x+2*x^2+x^3; set x=1 to get a(2) = 6.
a(n) ~ 2^(n*(n+1)/2)/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

Description corrected by Christian G. Bower
More terms from Vladeta Jovovic, Apr 18 2000
Entry revised by N. J. A. Sloane, Mar 06 2007
Showing 1-1 of 1 results.