cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 81 results. Next

A000250 Number of symmetric reflexive relations on n nodes: (1/2)*A000666.

Original entry on oeis.org

1, 3, 10, 45, 272, 2548, 39632, 1104306, 56871880, 5463113568, 978181717680, 326167542296048, 202701136710498400, 235284321080559981952, 511531711735594715527360, 2089424601541011618029114896, 16084004145036771186002041099712, 234026948449058790311618594954430848, 6454432593140577452393525511509194184320
Offset: 1

Views

Author

Keywords

References

  • Harary, Frank; Palmer, Edgar M.; Robinson, Robert W.; Schwenk, Allen J.; Enumeration of graphs with signed points and lines. J. Graph Theory 1 (1977), no. 4, 295-308.
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]} ] + Sum[Quotient[v[[i]], 2] + 1, {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/(2  n!)];
    a /@ Range[19] (* Jean-François Alcover, Jan 17 2020, after Andrew Howroyd in A000666 *)
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000250(n): return int(sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items())-1,prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 14 2024

Extensions

More terms from Vladeta Jovovic, Apr 18 2000
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007

A000088 Number of simple graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592, 50502031367952, 29054155657235488, 31426485969804308768, 64001015704527557894928, 245935864153532932683719776, 1787577725145611700547878190848, 24637809253125004524383007491432768
Offset: 0

Views

Author

Keywords

Comments

Euler transform of the sequence A001349.
Also, number of equivalence classes of sign patterns of totally nonzero symmetric n X n matrices.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 430.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
  • Thomas Boyer-Kassem, Conor Mayo-Wilson, Scientific Collaboration and Collective Knowledge: New Essays, New York, Oxford University Press, 2018, see page 47.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 54.
  • Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A002494.
Cf. A000666 (graphs with loops), A001349 (connected graphs), A002218, A006290, A003083.
Column k=1 of A063841.
Column k=2 of A309858.
Row sums of A008406.
Cf. also A000055, A000664.
Partial sums are A006897.

Programs

  • Maple
    # To produce all graphs on 4 nodes, for example:
    with(GraphTheory):
    L:=[NonIsomorphicGraphs](4,output=graphs,outputform=adjacency): # N. J. A. Sloane, Oct 07 2013
    seq(GraphTheory[NonIsomorphicGraphs](n,output=count),n=1..10); # Juergen Will, Jan 02 2018
    # alternative Maple program:
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> b(n$2, []):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    Needs["Combinatorica`"]
    Table[NumberOfGraphs[n], {n, 0, 19}] (* Geoffrey Critzer, Mar 12 2011 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
    b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1 )/2]+Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
    a[n_] := b[n, n, {}];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000088(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024
  • Sage
    def a(n):
        return len(list(graphs(n)))
    # Ralf Stephan, May 30 2014
    

Formula

a(n) = 2^binomial(n, 2)/n!*(1+(n^2-n)/2^(n-1)+8*n!/(n-4)!*(3*n-7)*(3*n-9)/2^(2*n)+O(n^5/2^(5*n/2))) (see Harary, Palmer reference). - Vladeta Jovovic and Benoit Cloitre, Feb 01 2003
a(n) = 2^binomial(n, 2)/n!*[1+2*n$2*2^{-n}+8/3*n$3*(3n-7)*2^{-2n}+64/3*n$4*(4n^2-34n+75)*2^{-3n}+O(n^8*2^{-4*n})] where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1). - Keith Briggs, Oct 24 2005
From David Pasino (davepasino(AT)yahoo.com), Jan 31 2009: (Start)
a(n) = a(n, 2), where a(n, t) is the number of t-uniform hypergraphs on n unlabeled nodes (cf. A000665 for t = 3 and A051240 for t = 4).
a(n, t) = Sum_{c : 1*c_1+2*c_2+...+n*c_n=n} per(c)*2^f(c), where:
..per(c) = 1/(Product_{i=1..n} c_i!*i^c_i);
..f(c) = (1/ord(c)) * Sum_{r=1..ord(c)} Sum_{x : 1*x_1+2*x_2+...+t*x_t=t} Product_{k=1..t} binomial(y(r, k; c), x_k);
..ord(c) = lcm{i : c_i>0};
..y(r, k; c) = Sum_{s|r : gcd(k, r/s)=1} s*c_(k*s) is the number of k-cycles of the r-th power of a permutation of type c. (End)
a(n) ~ 2^binomial(n,2)/n! [see Flajolet and Sedgewick p. 106, Gross and Yellen, p. 519, etc.]. - N. J. A. Sloane, Nov 11 2013
For asymptotics see also Lupanov 1959, 1960, also Turner and Kautz, p. 18. - N. J. A. Sloane, Apr 08 2014
a(n) = G(1) where G(z) = (1/n!) Sum_g det(I-g z^2)/det(I-g z) and g runs through the natural matrix n X n representation of the pair group A^2_n (for A^2_n see F. Harary and E. M. Palmer, Graphical Enumeration, page 83). - Leonid Bedratyuk, May 02 2015
From Keith Briggs, Jun 24 2016: (Start)
a(n) = 2^binomial(n,2)/n!*(
1+
2^( -n + 1)*n$2+
2^(-2*n + 3)*n$3*(n-7/3)+
2^(-3*n + 6)*n$4*(4*n^2/3 - 34*n/3 + 25) +
2^(-4*n + 10)*n$5*(8*n^3/3 - 142*n^2/3 + 2528*n/9 - 24914/45) +
2^(-5*n + 15)*n$6*(128*n^4/15 - 2296*n^3/9 + 25604*n^2/9 - 630554*n/45 + 25704) +
2^(-6*n + 21)*n$7*(2048*n^5/45 - 18416*n^4/9 + 329288*n^3/9 - 131680816*n^2/405 + 193822388*n/135 - 7143499196/2835) + ...),
where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1), using the method of Wright 1969.
(End)
a(n) = 1/n*Sum_{k=1..n} a(n-k)*A003083(k). - Andrey Zabolotskiy, Aug 11 2020

Extensions

Harary gives an incorrect value for a(8); compare A007149

A048143 Number of labeled connected simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 1, 5, 84, 6348, 7743728, 2414572893530, 56130437190053299918162
Offset: 0

Views

Author

Greg Huber, May 12 1983

Keywords

Comments

Also number of connected antichains on a labeled n-set.

Examples

			For n=3 we could have 2 edges (in 3 ways), 3 edges (1 way), or 3 edges and a triangle (1 way), so a(3)=5.
a(5) = 1+75+645+1655+2005+1345+485+115+20+2 = 6348.
		

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jun 17 2006
Entry revised by N. J. A. Sloane, Jul 27 2006

A285572 Number of finite sets of pairwise indivisible positive integers with least common multiple n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 9, 1, 1, 2, 2, 2, 6, 1, 2, 2, 4, 1, 9, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 23, 1, 2, 3, 1, 2, 9, 1, 3, 2, 9, 1, 10, 1, 2, 3, 3, 2, 9, 1, 5, 1, 2, 1, 23, 2, 2, 2, 4, 1, 23, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6
Offset: 1

Views

Author

Gus Wiseman, Apr 21 2017

Keywords

Examples

			The a(72)=10 sets are {72}, {8,9}, {8,18}, {8,36}, {9,24}, {18,24}, {24,36}, {6,8,9}, {8,9,12}, {8,12,18}.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[Rest[stableSets[Divisors[n],Divisible]],LCM@@#===n&]],{n,1,nn}]

A322661 Number of graphs with loops spanning n labeled vertices.

Original entry on oeis.org

1, 1, 5, 45, 809, 28217, 1914733, 254409765, 66628946641, 34575388318705, 35680013894626133, 73392583417010454429, 301348381381966079690489, 2471956814761996896091805993, 40530184362443281653842556898237, 1328619783326799871943604598592805525
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2018

Keywords

Comments

The span of a graph is the union of its edges.

Examples

			The a(2) = 5 edge-sets:
  {{1,2}}
  {{1,1},{1,2}}
  {{1,1},{2,2}}
  {{1,2},{2,2}}
  {{1,1},{1,2},{2,2}}
		

Crossrefs

Cf. A000666, A006125, A006129 (loops not allowed), A054921, A062740, A116539, A320461, A322635, A048291 (for directed edgs).

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*2^Binomial[k+1,2],{k,0,n}],{n,10}]
    (* second program *)
    Table[Select[Expand[Product[1+x[i]*x[j],{j,n},{i,j}]],And@@Table[!FreeQ[#,x[i]],{i,n}]&]/.x[_]->1,{n,7}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*2^binomial(k+1,2)) \\ Andrew Howroyd, Jan 06 2024

Formula

Exponential transform of A062740, if we assume A062740(1) = 1.
Inverse binomial transform of A006125(n+1) = 2^binomial(n+1,2).

A054921 Number of connected unlabeled symmetric relations (graphs with loops) having n nodes.

Original entry on oeis.org

1, 2, 3, 10, 50, 354, 3883, 67994, 2038236, 109141344, 10693855251, 1934271527050, 648399961915988, 404093642681273382, 469756524755173254759, 1022121472711196824292810, 4176802133456105622904206409, 32159648543645931290004658982846
Offset: 0

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

Number of non-isomorphic connected antichains of two-element multisets spanning a set of n vertices. Connected antichains are also called clutters.

Examples

			A000666(n) = Number of increasing sequences of pairs ((x_1,y_1),...,(x_k,y_k)) such that: Sum(x_i)=n and 1<=y_i<=a(x_i+1) for all i. For example the A000666(3)=20 sequences are {((1,1),(1,1),(1,1)), ((1,1),(1,1),(1,2)), ((1,1),(1,2),(1,2)), ((1,2),(1,2),(1,2)); ((1,1),(2,1)), ((1,1),(2,2)), ((1,1),(2,3)), ((1,2),(2,1)), ((1,2),(2,2)), ((1,2),(2,3)); ((3,1)), ((3,2)), ((3,3)), ((3,4)), ((3,5)), ((3,6)), ((3,7)), ((3,8)), ((3,9)), ((3,10))}. - _Gus Wiseman_, Jul 21 2016
		

References

  • Bender, Edward A., and E. Rodney Canfield. "Enumeration of connected invariant graphs." Journal of Combinatorial Theory, Series B 34.3 (1983): 268-278. See p. 273.

Crossrefs

Cf. A000666. Row sums of A304311.

Programs

  • Mathematica
    nn=8;
    unlabeledSimpleMluts[n_Integer]:=unlabeledSimpleMluts[n]=Total[Power[2,PermutationCycles[Ordering[Map[Sort,Select[Tuples[Range[n],2],OrderedQ]/.Table[i->Part[#,i],{i,n}]]],Length]]&/@Permutations[Range[n]]]/n!;
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    ReplaceAll[a/@Range[0,nn],Solve[Table[unlabeledSimpleMluts[n]==If[n===0,a[0],Total[Function[ptn,Times@@(multing[a[First[#]],Length[#]]&/@Split[ptn])]/@IntegerPartitions[n]]],{n,0,nn}],a/@Range[0,nn]][[1]]] (* Gus Wiseman, Jul 21 2016 *)
  • Python
    from functools import lru_cache
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    from sympy import mobius, divisors
    def A054921(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return sum(mobius(d)*c(n//d) for d in divisors(n,generator=True))//n if n else 1 # Chai Wah Wu, Jul 10 2024

Formula

EULERi transform of A000666.

Extensions

More terms from Vladeta Jovovic, Jul 17 2000
Added a(0)=1 by Gus Wiseman, Jul 21 2016

A000273 Number of unlabeled simple digraphs with n nodes.

Original entry on oeis.org

1, 1, 3, 16, 218, 9608, 1540944, 882033440, 1793359192848, 13027956824399552, 341260431952972580352, 32522909385055886111197440, 11366745430825400574433894004224, 14669085692712929869037096075316220928, 70315656615234999521385506555979904091217920
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 651.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 522.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 225.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 124, Table 5.1.2 and p. 241, Table A4.
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A052283 and of A217654.

Programs

  • Maple
    with(combinat):with(numtheory):
    for n from 0 to 20 do p:=partition(n):
    s:=0:for k from 1 to nops(p) do
    q:=convert(p[k],multiset):
    for i from 1 to n do a(i):=0:od:for i from 1 to nops(q) do a(q[i][1]):=q[i][2]:od:
    c:=1:ord:=1:for i from 1 to n do c:=c*a(i)!*i^a(i): if a(i)<>0 then ord:=lcm(ord,i):fi:od:
    g:=0:for d from 1 to ord do if ord mod d=0 then g1:=0:for del from 1 to d do if del<=n and d mod del=0 then g1:=g1+del*a(del):fi:od:g:=g+phi(ord/d)*g1*(g1-1):fi:od:
    s:=s+2^(g/ord)/c:
    od:
    print(n,s):
    od:
    # Vladeta Jovovic, Jun 06 2006
    # second Maple program:
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
          igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    A000273 := n-> b(n$2, []):
    seq(A000273(n), n=0..20);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    Table[CycleIndex[PairGroup[SymmetricGroup[n],Ordered],t]/.Table[t[i]->1+x^i,{i,1,n^2}]/.{x->1},{n,1,7}] (* or *)
      Table[GraphPolynomial[n,t,Directed]/.{t->1},{n,1,20}]
    (* Geoffrey Critzer, Mar 08 2011 *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i-1}] + Total[v-1];
    a[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from math import gcd, factorial
    from sympy.utilities.iterables import partitions
    def permcount(v):
        m, s, k = 1, 0, 0
        for i, t in enumerate(v):
            k = k+1 if i > 0 and t == v[i-1] else 1; m *= t*k; s += t
        return factorial(s)//m
    def edges(v): return sum(sum(2*gcd(v[i], v[j]) for j in range(i)) for i in range(1, len(v))) + sum(vi-1 for vi in v)
    def a(n):
        s = 0
        for p in partitions(n):
            pvec = []
            for i in sorted(p): pvec.extend([i]*p[i])
            s += permcount(pvec)*2**edges(pvec)
        return s//factorial(n)
    print([a(n) for n in range(15)]) # Michael S. Branicky, Nov 14 2022 after Andrew Howroyd
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000273(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

a(n) ~ 2^(n*(n-1))/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

More terms from Vladeta Jovovic, Dec 14 1999

A000595 Number of binary relations on n unlabeled points.

Original entry on oeis.org

1, 2, 10, 104, 3044, 291968, 96928992, 112282908928, 458297100061728, 6666621572153927936, 349390545493499839161856, 66603421985078180758538636288, 46557456482586989066031126651104256, 120168591267113007604119117625289606148096, 1152050155760474157553893461743236772303142428672
Offset: 0

Views

Author

Keywords

Comments

Number of orbits under the action of permutation group S(n) on n X n {0,1} matrices. The action is defined by f.M(i,j)=M(f(i),f(j)).
Equivalently, the number of digraphs on n unlabeled nodes with loops allowed but no more than one arc with the same start and end node. - Andrew Howroyd, Oct 22 2017

Examples

			From _Gus Wiseman_, Jun 17 2019: (Start)
Non-isomorphic representatives of the a(2) = 10 relations:
  {}
  {1->1}
  {1->2}
  {1->1, 1->2}
  {1->1, 2->1}
  {1->1, 2->2}
  {1->2, 2->1}
  {1->1, 1->2, 2->1}
  {1->1, 1->2, 2->2}
  {1->1, 1->2, 2->1, 2->2}
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 76 (2.2.30)
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    NSeq := function ( n ) return Sum(List(ConjugacyClasses(SymmetricGroup(n)), c -> (2^Length(Orbits(Group(Representative(c)), CartesianProduct([1..n],[1..n]), OnTuples))) * Size(c)))/Factorial(n); end; # Dan Hoey, May 04 2001
    
  • Mathematica
    Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n],Ordered], Permutations[Range[n^2-n+1,n^2]],2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,7}]] (* Geoffrey Critzer, Nov 02 2011 *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
    a[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
    dinorm[m_]:=If[m=={},{},If[Union@@m!=Range[Max@@Flatten[m]],dinorm[m/.Apply[Rule,Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}],{1}]],First[Sort[dinorm[m,1]]]]];
    dinorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#1>=aft&]}]},Union@@(dinorm[#1,aft+1]&)/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0}],{par,First/@Position[mx,Max[mx]]}]]]];
    Table[Length[Union[dinorm/@Subsets[Tuples[Range[n],2]]]],{n,0,3}] (* Gus Wiseman, Jun 17 2019 *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i])}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import product
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000595(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 02 2024

Formula

a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...] / (1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 2^sum {i, j>=1} (gcd(i, j)*s_i*s_j). - Christian G. Bower, Jan 05 2004
a(n) ~ 2^(n^2)/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

More terms from Vladeta Jovovic, Feb 07 2000
Still more terms from Dan Hoey, May 04 2001

A054548 Triangular array giving number of labeled graphs on n unisolated nodes and k=0...n*(n-1)/2 edges.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 3, 16, 15, 6, 1, 0, 0, 0, 30, 135, 222, 205, 120, 45, 10, 1, 0, 0, 0, 15, 330, 1581, 3760, 5715, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 0, 0, 0, 0, 315, 4410, 23604, 73755, 159390, 259105, 331716, 343161, 290745, 202755, 116175
Offset: 0

Views

Author

Vladeta Jovovic, Apr 09 2000

Keywords

Examples

			From _Gus Wiseman_, Feb 14 2024: (Start)
Triangle begins:
   1
   0
   0   1
   0   0   3   1
   0   0   3  16  15   6   1
   0   0   0  30 135 222 205 120  45  10   1
Row n = 4 counts the following graphs:
  .  .  12-34  12-13-14  12-13-14-23  12-13-14-23-24  12-13-14-23-24-34
        13-24  12-13-24  12-13-14-24  12-13-14-23-34
        14-23  12-13-34  12-13-14-34  12-13-14-24-34
               12-14-23  12-13-23-24  12-13-23-24-34
               12-14-34  12-13-23-34  12-14-23-24-34
               12-23-24  12-13-24-34  13-14-23-24-34
               12-23-34  12-14-23-24
               12-24-34  12-14-23-34
               13-14-23  12-14-24-34
               13-14-24  12-23-24-34
               13-23-24  13-14-23-24
               13-23-34  13-14-23-34
               13-24-34  13-14-24-34
               14-23-24  13-23-24-34
               14-23-34  14-23-24-34
               14-24-34
(End)
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, Page 29, Exercise 1.4.

Crossrefs

Row sums give A006129. Cf. A054547.
The connected case is A062734, with loops A369195.
This is the covering case of A084546.
Column sums are A121251, with loops A173219.
The version with loops is A369199, row sums A322661.
The unlabeled version is A370167, row sums A002494.
A006125 counts simple graphs; also loop-graphs if shifted left.

Programs

  • Mathematica
    nn=5; s=Sum[(1+y)^Binomial[n,2]  x^n/n!, {n,0,nn}]; Range[0,nn]! CoefficientList[Series[ s Exp[-x], {x,0,nn}], {x,y}] //Grid  (* returns triangle indexed at n = 0, Geoffrey Critzer, Oct 07 2012 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}],{k}],Union@@#==Range[n]&]],{n,0,5},{k,0,Binomial[n,2]}] (* Gus Wiseman, Feb 14 2024 *)

Formula

T(n, k) = Sum_{i=0..n} (-1)^(n-i)*C(n, i)*C(C(i, 2), k), k=0...n*(n-1)/2.
E.g.f.: exp(-x)*Sum_{n>=0} (1 + y)^C(n,2)*x^n/n!. - Geoffrey Critzer, Oct 07 2012

Extensions

a(0) prepended by Gus Wiseman, Feb 14 2024

A014068 a(n) = binomial(n*(n+1)/2, n).

Original entry on oeis.org

1, 1, 3, 20, 210, 3003, 54264, 1184040, 30260340, 886163135, 29248649430, 1074082795968, 43430966148115, 1917283000904460, 91748617512913200, 4730523156632595024, 261429178502421685800, 15415916972482007401455, 966121413245991846673830, 64123483527473864490450300
Offset: 0

Views

Author

Keywords

Comments

Product of next n numbers divided by product of first n numbers. E.g., a(4) = (7*8*9*10)/(1*2*3*4)= 210. - Amarnath Murthy, Mar 22 2004
Also the number of labeled loop-graphs with n vertices and n edges. The covering case is A368597. - Gus Wiseman, Jan 25 2024

Examples

			From _Gus Wiseman_, Jan 25 2024: (Start)
The a(0) = 1 through a(3) = 20 loop-graph edge-sets (loops shown as singletons):
  {}  {{1}}  {{1},{2}}    {{1},{2},{3}}
             {{1},{1,2}}  {{1},{2},{1,2}}
             {{2},{1,2}}  {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{1,3}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{2},{3},{2,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
(End)
		

Crossrefs

Diagonal of A084546.
Without loops we have A116508, covering A367863, unlabeled A006649.
Allowing edges of any positive size gives A136556, covering A054780.
The covering case is A368597.
The unlabeled version is A368598, covering A368599.
The connected case is A368951.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 (shifted left) counts loop-graphs, covering A322661.
A006129 counts covering simple graphs, connected A001187.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Magma
    [Binomial(Binomial(n+1,2), n): n in [0..40]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    Binomial[First[#],Last[#]]&/@With[{nn=20},Thread[{Accumulate[ Range[ 0,nn]], Range[ 0,nn]}]] (* Harvey P. Dale, May 27 2014 *)
  • Python
    from math import comb
    def A014068(n): return comb(comb(n+1,2),n) # Chai Wah Wu, Jul 14 2024
  • Sage
    [(binomial(binomial(n+1, n-1), n)) for n in range(20)] # Zerinvary Lajos, Nov 30 2009
    

Formula

For n >= 1, Product_{k=1..n} a(k) = A022915(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
For n > 0, a(n) = A022915(n)/A022915(n-1). - Gerald McGarvey, Jul 26 2004
a(n) = binomial(T(n+1), T(n)) where T(n) = the n-th triangular number. - Amarnath Murthy, Jul 14 2005
a(n) = binomial(binomial(n+2, n), n+1) for n >= -1. - Zerinvary Lajos, Nov 30 2009
From Peter Bala, Feb 27 2020: (Start)
a(p) == (p + 1)/2 ( mod p^3 ) for prime p >= 5 (apply Mestrovic, equation 37).
Conjectural: a(2*p) == p*(2*p + 1) ( mod p^4 ) for prime p >= 5. (End)
a(n) = A084546(n,n). - Gus Wiseman, Jan 25 2024
a(n) = [x^n] (1+x)^(n*(n+1)/2). - Vaclav Kotesovec, Aug 06 2025
Showing 1-10 of 81 results. Next